Last active
July 9, 2021 12:53
-
-
Save hamid-abbaszadeh/ca8555a0f5cfc2cb09e78b96dedd25c8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
Background | |
~~~~~~~~~~ | |
The A* path finding algorithm is a widely used and powerful shortest path | |
finding node traversal algorithm. A heuristic is used to bias the algorithm | |
towards success. :-/ | |
*/ | |
#include <iostream> | |
#include <string> | |
#include <algorithm> | |
using namespace std; | |
//olcConsoleGameEngine Provides a fast, richly featured, cross platform pixel drawing and user interface framework. | |
#include "olcConsoleGameEngine.h" | |
class OneLoneCoder_PathFinding : public olcConsoleGameEngine | |
{ | |
public: | |
OneLoneCoder_PathFinding() | |
{ | |
m_sAppName = L"Path Finding"; | |
} | |
private: | |
struct sNode | |
{ | |
bool bObstacle = false; // Is the node an obstruction? | |
bool bVisited = false; // Have we searched this node before? | |
float fGlobalGoal; // Distance to goal so far | |
float fLocalGoal; // Distance to goal if we took the alternative route | |
int x; // Nodes position in 2D space | |
int y; | |
vector<sNode*> vecNeighbours; // Connections to neighbours | |
sNode* parent; // Node connecting to this node that offers shortest parent | |
}; | |
sNode *nodes = nullptr; | |
int nMapWidth = 16; | |
int nMapHeight = 16; | |
sNode *nodeStart = nullptr; | |
sNode *nodeEnd = nullptr; | |
protected: | |
virtual bool OnUserCreate() | |
{ | |
// Create a 2D array of nodes - this is for convenience of rendering and construction | |
// and is not required for the algorithm to work - the nodes could be placed anywhere | |
// in any space, in multiple dimensions... | |
nodes = new sNode[nMapWidth * nMapHeight]; | |
for (int x = 0; x < nMapWidth; x++) | |
for (int y = 0; y < nMapHeight; y++) | |
{ | |
nodes[y * nMapWidth + x].x = x; // ...because we give each node its own coordinates | |
nodes[y * nMapWidth + x].y = y; | |
nodes[y * nMapWidth + x].bObstacle = false; | |
nodes[y * nMapWidth + x].parent = nullptr; | |
nodes[y * nMapWidth + x].bVisited = false; | |
} | |
// Create connections - in this case nodes are on a regular grid | |
for (int x = 0; x < nMapWidth; x++) | |
for (int y = 0; y < nMapHeight; y++) | |
{ | |
if(y>0) | |
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y - 1) * nMapWidth + (x + 0)]); | |
if(y<nMapHeight-1) | |
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 1) * nMapWidth + (x + 0)]); | |
if (x>0) | |
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 0) * nMapWidth + (x - 1)]); | |
if(x<nMapWidth-1) | |
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 0) * nMapWidth + (x + 1)]); | |
// We can also connect diagonally | |
/*if (y>0 && x>0) | |
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y - 1) * nMapWidth + (x - 1)]); | |
if (y<nMapHeight-1 && x>0) | |
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 1) * nMapWidth + (x - 1)]); | |
if (y>0 && x<nMapWidth-1) | |
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y - 1) * nMapWidth + (x + 1)]); | |
if (y<nMapHeight - 1 && x<nMapWidth-1) | |
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 1) * nMapWidth + (x + 1)]); | |
*/ | |
} | |
// Manually positio the start and end markers so they are not nullptr | |
nodeStart = &nodes[(nMapHeight / 2) * nMapWidth + 1]; | |
nodeEnd = &nodes[(nMapHeight / 2) * nMapWidth + nMapWidth-2]; | |
return true; | |
} | |
bool Solve_AStar() | |
{ | |
// Reset Navigation Graph - default all node states | |
for (int x = 0; x < nMapWidth; x++) | |
for (int y = 0; y < nMapHeight; y++) | |
{ | |
nodes[y*nMapWidth + x].bVisited = false; | |
nodes[y*nMapWidth + x].fGlobalGoal = INFINITY; | |
nodes[y*nMapWidth + x].fLocalGoal = INFINITY; | |
nodes[y*nMapWidth + x].parent = nullptr; // No parents | |
} | |
auto distance = [](sNode* a, sNode* b) // For convenience | |
{ | |
return sqrtf((a->x - b->x)*(a->x - b->x) + (a->y - b->y)*(a->y - b->y)); | |
}; | |
auto heuristic = [distance](sNode* a, sNode* b) // So we can experiment with heuristic | |
{ | |
return distance(a, b); | |
}; | |
// Setup starting conditions | |
sNode *nodeCurrent = nodeStart; | |
nodeStart->fLocalGoal = 0.0f; | |
nodeStart->fGlobalGoal = heuristic(nodeStart, nodeEnd); | |
// Add start node to not tested list - this will ensure it gets tested. | |
// As the algorithm progresses, newly discovered nodes get added to this | |
// list, and will themselves be tested later | |
list<sNode*> listNotTestedNodes; | |
listNotTestedNodes.push_back(nodeStart); | |
// if the not tested list contains nodes, there may be better paths | |
// which have not yet been explored. However, we will also stop | |
// searching when we reach the target - there may well be better | |
// paths but this one will do - it wont be the longest. | |
while (!listNotTestedNodes.empty() && nodeCurrent != nodeEnd)// Find absolutely shortest path // && nodeCurrent != nodeEnd) | |
{ | |
// Sort Untested nodes by global goal, so lowest is first | |
listNotTestedNodes.sort([](const sNode* lhs, const sNode* rhs){ return lhs->fGlobalGoal < rhs->fGlobalGoal; } ); | |
// Front of listNotTestedNodes is potentially the lowest distance node. Our | |
// list may also contain nodes that have been visited, so ditch these... | |
while(!listNotTestedNodes.empty() && listNotTestedNodes.front()->bVisited) | |
listNotTestedNodes.pop_front(); | |
// ...or abort because there are no valid nodes left to test | |
if (listNotTestedNodes.empty()) | |
break; | |
nodeCurrent = listNotTestedNodes.front(); | |
nodeCurrent->bVisited = true; // We only explore a node once | |
// Check each of this node's neighbours... | |
for (auto nodeNeighbour : nodeCurrent->vecNeighbours) | |
{ | |
// ... and only if the neighbour is not visited and is | |
// not an obstacle, add it to NotTested List | |
if (!nodeNeighbour->bVisited && nodeNeighbour->bObstacle == 0) | |
listNotTestedNodes.push_back(nodeNeighbour); | |
// Calculate the neighbours potential lowest parent distance | |
float fPossiblyLowerGoal = nodeCurrent->fLocalGoal + distance(nodeCurrent, nodeNeighbour); | |
// If choosing to path through this node is a lower distance than what | |
// the neighbour currently has set, update the neighbour to use this node | |
// as the path source, and set its distance scores as necessary | |
if (fPossiblyLowerGoal < nodeNeighbour->fLocalGoal) | |
{ | |
nodeNeighbour->parent = nodeCurrent; | |
nodeNeighbour->fLocalGoal = fPossiblyLowerGoal; | |
// The best path length to the neighbour being tested has changed, so | |
// update the neighbour's score. The heuristic is used to globally bias | |
// the path algorithm, so it knows if its getting better or worse. At some | |
// point the algo will realise this path is worse and abandon it, and then go | |
// and search along the next best path. | |
nodeNeighbour->fGlobalGoal = nodeNeighbour->fLocalGoal + heuristic(nodeNeighbour, nodeEnd); | |
} | |
} | |
} | |
return true; | |
} | |
virtual bool OnUserUpdate(float fElapsedTime) | |
{ | |
int nNodeSize = 9; | |
int nNodeBorder = 2; | |
// Use integer division to nicely get cursor position in node space | |
int nSelectedNodeX = m_mousePosX / nNodeSize; | |
int nSelectedNodeY = m_mousePosY / nNodeSize; | |
if (m_mouse[0].bReleased) // Use mouse to draw maze, shift and ctrl to place start and end | |
{ | |
if(nSelectedNodeX >=0 && nSelectedNodeX < nMapWidth) | |
if (nSelectedNodeY >= 0 && nSelectedNodeY < nMapHeight) | |
{ | |
if (m_keys[VK_SHIFT].bHeld) | |
nodeStart = &nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX]; | |
else if (m_keys[VK_CONTROL].bHeld) | |
nodeEnd = &nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX]; | |
else | |
nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX].bObstacle = !nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX].bObstacle; | |
Solve_AStar(); // Solve in "real-time" gives a nice effect | |
} | |
} | |
// Draw Connections First - lines from this nodes position to its | |
// connected neighbour node positions | |
Fill(0, 0, ScreenWidth(), ScreenHeight(), L' '); | |
for (int x = 0; x < nMapWidth; x++) | |
for (int y = 0; y < nMapHeight; y++) | |
{ | |
for (auto n : nodes[y*nMapWidth + x].vecNeighbours) | |
{ | |
DrawLine(x*nNodeSize + nNodeSize / 2, y*nNodeSize + nNodeSize / 2, | |
n->x*nNodeSize + nNodeSize / 2, n->y*nNodeSize + nNodeSize / 2, PIXEL_SOLID, FG_DARK_BLUE); | |
} | |
} | |
// Draw Nodes on top | |
for (int x = 0; x < nMapWidth; x++) | |
for (int y = 0; y < nMapHeight; y++) | |
{ | |
Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, | |
(x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, | |
PIXEL_HALF, nodes[y * nMapWidth + x].bObstacle ? FG_WHITE : FG_BLUE); | |
if (nodes[y * nMapWidth + x].bVisited) | |
Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, (x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, PIXEL_SOLID, FG_BLUE); | |
if(&nodes[y * nMapWidth + x] == nodeStart) | |
Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, (x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, PIXEL_SOLID, FG_GREEN); | |
if(&nodes[y * nMapWidth + x] == nodeEnd) | |
Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, (x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, PIXEL_SOLID, FG_RED); | |
} | |
// Draw Path by starting ath the end, and following the parent node trail | |
// back to the start - the start node will not have a parent path to follow | |
if (nodeEnd != nullptr) | |
{ | |
sNode *p = nodeEnd; | |
while (p->parent != nullptr) | |
{ | |
DrawLine(p->x*nNodeSize + nNodeSize / 2, p->y*nNodeSize + nNodeSize / 2, | |
p->parent->x*nNodeSize + nNodeSize / 2, p->parent->y*nNodeSize + nNodeSize / 2, PIXEL_SOLID, FG_YELLOW); | |
// Set next node to this node's parent | |
p = p->parent; | |
} | |
} | |
return true; | |
} | |
}; | |
int main() | |
{ | |
OneLoneCoder_PathFinding game; | |
game.ConstructConsole(160, 120, 3, 3); | |
game.Start(); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment