Skip to content

Instantly share code, notes, and snippets.

@harrkout
Last active February 1, 2024 08:41
Show Gist options
  • Save harrkout/f7edf6fa21a699e69fadcc347ea91779 to your computer and use it in GitHub Desktop.
Save harrkout/f7edf6fa21a699e69fadcc347ea91779 to your computer and use it in GitHub Desktop.
Machine_Learning_Core_STM32WL55/SHUBv3_MLC Serial Output App with DIL24 socket STEVAL-MKI197V1's LSM6DSOX sensor
/*
* WL55JCx + SHUBv3 + MKI197v1
*******************************************************************************
*
* This project was created for the WL55JC1 board, combined with the Sensor
* Hub v3 and the MKI197v1, to enable the Machine Learning Core of the LSM6DSOX Sensor
*
* Author: Harris Koutsourelakis, ISCA Lab
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/*
* Some MLC examples are available at:
* https://github.com/STMicroelectronics/STMems_Machine_Learning_Core
* the same repository is linked to this repository in folder "_resources"
*
* For more information about Machine Learning Core tool please refer
* to AN5259 "LSM6DSOX: Machine Learning Core".
*
* This example was developed using the following STMicroelectronics
* evaluation boards:
*
* - STEVAL_MKI109V3 + STEVAL-MKI197V1
* - NUCLEO_F411RE + STEVAL-MKI197V1
* - DISCOVERY_SPC584B + STEVAL-MKI197V1
*
* If you need to run this example on a different hardware platform a
* modification of the functions: `platform_write`, `platform_read`,
* `tx_com` and 'platform_init' is required.
*
*/
//#define STEVAL_MKI109V3 /* little endian */
//#define NUCLEO_F411RE /* little endian */
//#define SPC584B_DIS /* big endian */
/* ATTENTION: By default the driver is little endian. If you need switch
* to big endian please see "Endianness definitions" in the
* header file of the driver (_reg.h).
*/
/* Includes ------------------------------------------------------------------*/
#include <string.h>
#include <stdio.h>
//#include "lsm6dsox_vibration_monitoring.h"
#include "falling.h"
#include "lsm6dsox_reg.h"
//including WL55 bus header to get hi2c2
#include "stm32wlxx_nucleo_bus.h"
#include "main.h"
#include "app_mems.h"
/* Private macro -------------------------------------------------------------*/
#define BOOT_TIME 10 //ms
#define SENSOR_BUS hi2c2
#define PWM_3V3 915
/* Private variables ---------------------------------------------------------*/
static uint8_t whoamI, rst;
static uint8_t tx_buffer[1000];
/* Extern variables ----------------------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*
* WARNING:
* Functions declare in this section are defined at the end of this file
* and are strictly related to the hardware platform used.
*
*/
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp,
uint16_t len);
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp,
uint16_t len);
static void platform_delay(uint32_t ms);
static void tx_com( uint8_t *tx_buffer, uint16_t len );
static void platform_init(void);
/* Main Example --------------------------------------------------------------*/
void lsm6dsox_mlc(void)
{
/* Variable declaration */
lsm6dsox_pin_int1_route_t pin_int1_route;
lsm6dsox_all_sources_t status;
lsm6dsox_emb_sens_t emb_sens;
stmdev_ctx_t dev_ctx;
uint8_t mlc_out[8];
uint32_t i;
/* Initialize mems driver interface */
dev_ctx.write_reg = platform_write;
dev_ctx.read_reg = platform_read;
dev_ctx.handle = &SENSOR_BUS;
/* Init test platform */
platform_init();
/* Wait sensor boot time */
platform_delay(BOOT_TIME);
/* Check device ID */
lsm6dsox_device_id_get(&dev_ctx, &whoamI);
if (whoamI != LSM6DSOX_ID)
while (1);
/* Debugging prints
{
sprintf("MLC_WHOAMI: %d\r\n", whoamI);
sprintf("lsm6dsox_device_id_get: %d\r\n", lsm6dsox_device_id_get);
}
*/
/* Restore default configuration */
lsm6dsox_reset_set(&dev_ctx, PROPERTY_ENABLE);
do {
lsm6dsox_reset_get(&dev_ctx, &rst);
} while (rst);
/* Change 'falling' with the name of the function of the header for the Machile Learning Core Dataset */
for ( i = 0; i < (sizeof(falling) /
sizeof(ucf_line_t) ); i++ ) {
lsm6dsox_write_reg(&dev_ctx, falling[i].address,
(uint8_t *)&falling[i].data, 1);
}
/* End Machine Learning Core configuration */
/* At this point the device is ready to run but if you need you can also
* interact with the device but taking in account the MLC configuration.
*
* For more information about Machine Learning Core tool please refer
* to AN5259 "LSM6DSOX: Machine Learning Core".
*/
/* Turn off embedded features */
lsm6dsox_embedded_sens_get(&dev_ctx, &emb_sens);
lsm6dsox_embedded_sens_off(&dev_ctx);
platform_delay(10);
/* Turn off Sensors */
lsm6dsox_xl_data_rate_set(&dev_ctx, LSM6DSOX_XL_ODR_OFF);
lsm6dsox_gy_data_rate_set(&dev_ctx, LSM6DSOX_GY_ODR_OFF);
/* Disable I3C interface */
lsm6dsox_i3c_disable_set(&dev_ctx, LSM6DSOX_I3C_DISABLE);
/* Enable Block Data Update */
lsm6dsox_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
/* Set full scale */
lsm6dsox_xl_full_scale_set(&dev_ctx, LSM6DSOX_4g);
lsm6dsox_gy_full_scale_set(&dev_ctx, LSM6DSOX_2000dps);
/* Route signals on interrupt pin 1 */
lsm6dsox_pin_int1_route_get(&dev_ctx, &pin_int1_route);
pin_int1_route.mlc1 = PROPERTY_ENABLE;
lsm6dsox_pin_int1_route_set(&dev_ctx, pin_int1_route);
/* Configure interrupt pin mode notification */
lsm6dsox_int_notification_set(&dev_ctx,
LSM6DSOX_BASE_PULSED_EMB_LATCHED);
/* Enable embedded features */
lsm6dsox_embedded_sens_set(&dev_ctx, &emb_sens);
/* Set Output Data Rate.
* Selected data rate have to be equal or greater with respect
* with MLC data rate.
*/
lsm6dsox_xl_data_rate_set(&dev_ctx, LSM6DSOX_XL_ODR_26Hz);
lsm6dsox_gy_data_rate_set(&dev_ctx, LSM6DSOX_GY_ODR_OFF);
/* Main loop */
while (1) {
/* Read interrupt source registers in polling mode (no int) */
lsm6dsox_all_sources_get(&dev_ctx, &status);
if (status.mlc1) {
lsm6dsox_mlc_out_get(&dev_ctx, mlc_out);
sprintf((char *)tx_buffer, "Detect MLC interrupt code: %02X\r\n",
mlc_out[0]);
tx_com(tx_buffer, strlen((char const *)tx_buffer));
}
}
}
/*
* @brief Write generic device register (platform dependent)
*
* @param handle customizable argument. In this examples is used in
* order to select the correct sensor bus handler.
* @param reg register to write
* @param bufp pointer to data to write in register reg
* @param len number of consecutive register to write
*
*/
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp,
uint16_t len)
{
HAL_I2C_Mem_Write(handle, LSM6DSOX_I2C_ADD_L, reg,
I2C_MEMADD_SIZE_8BIT, (uint8_t*) bufp, len, 1000);
}
/*
* @brief Read generic device register (platform dependent)
*
* @param handle customizable argument. In this examples is used in
* order to select the correct sensor bus handler.
* @param reg register to read
* @param bufp pointer to buffer that store the data read
* @param len number of consecutive register to read
*
*/
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp,
uint16_t len)
{
HAL_I2C_Mem_Read(handle, LSM6DSOX_I2C_ADD_L, reg,
I2C_MEMADD_SIZE_8BIT, bufp, len, 1000);
}
/*
* @brief platform specific outputs on terminal (platform dependent)
*
* @param tx_buffer buffer to transmit
* @param len number of byte to send
*
*/
static void tx_com(uint8_t *tx_buffer, uint16_t len)
{
HAL_UART_Transmit(&hlpuart1, tx_buffer, len, 1000);
}
/*
* @brief platform specific delay (platform dependent)
*
* @param ms delay in ms
*
*/
static void platform_delay(uint32_t ms)
{
// HAL_Delay(1000);
}
/*
* @brief platform specific initialization (platform dependent)
*/
static void platform_init(void)
{
TIM1->CCR1 = PWM_3V3;
// TIM1->CCR2 = PWM_3V3;
// HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
// HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
HAL_Delay(1000);
}
/*
* WL55JCx + SHUBv3 + MKI197v1
*******************************************************************************
*
* This project was created for the WL55JC1 board, combined with the Sensor
* Hub v3 and the MKI197v1, to enable the Machine Learning Core of the LSM6DSOX Sensor
*
* Author: Harris Koutsourelakis, ISCA Lab
*
*
*******************************************************************************
******************************** SERIAL OUTPUT ********************************
*******************************************************************************
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "app_mems.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "shub_v3_0.h"
//#include "falling_detection.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CRC_HandleTypeDef hcrc;
UART_HandleTypeDef huart1;
RTC_HandleTypeDef hrtc;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_CRC_Init(void);
static void MX_RTC_Init(void);
static void MX_TIM1_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_CRC_Init();
MX_RTC_Init();
MX_TIM1_Init();
MX_USART1_UART_Init();
MX_TIM2_Init();
MX_MEMS_Init();
/* USER CODE BEGIN 2 */
shub_init();
shub_power_i2c_on();
shub_power_i2c_mlc_on();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
// lsm6dsox_mlc();
/* USER CODE END WHILE */
MX_MEMS_Process();
/* USER CODE BEGIN 3 */
/* Call the MLC function inside the while(1) to have output of the Registers
* for the Machine Learning Core*/
lsm6dsox_mlc();
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure LSE Drive Capability
*/
HAL_PWR_EnableBkUpAccess();
__HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_LSE
|RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
RCC_OscInitStruct.LSIDiv = RCC_LSI_DIV1;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK
|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
hrtc.Init.OutPutPullUp = RTC_OUTPUT_PULLUP_NONE;
hrtc.Init.BinMode = RTC_BINARY_NONE;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0x0;
sTime.Minutes = 0x0;
sTime.Seconds = 0x0;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_MONDAY;
sDate.Month = RTC_MONTH_JANUARY;
sDate.Date = 0x1;
sDate.Year = 0x0;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 4294967295;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMAMUX1_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, LED1_Pin|LED2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, FE_CTRL3_Pin|FE_CTRL2_Pin|FE_CTRL1_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : LED1_Pin LED2_Pin */
GPIO_InitStruct.Pin = LED1_Pin|LED2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : FE_CTRL3_Pin FE_CTRL2_Pin FE_CTRL1_Pin */
GPIO_InitStruct.Pin = FE_CTRL3_Pin|FE_CTRL2_Pin|FE_CTRL1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : PB1 */
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PC0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : PC6 */
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI0_IRQn);
HAL_NVIC_SetPriority(EXTI1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI1_IRQn);
HAL_NVIC_SetPriority(EXTI9_5_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI9_5_IRQn);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment