Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
ResNet50 light 3-stage
name: "ResNet50"
input: "data"
input_shape {
dim: 1
dim: 3
dim: 224
dim: 224
}
input: "im_info"
input_shape {
dim: 1
dim: 3
}
# ------------ Convolution -----------
layer {
bottom: "data"
top: "conv1"
name: "conv1"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
stride: 2
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "bn_conv1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "scale_conv1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "conv1_relu"
type: "ReLU"
}
layer {
bottom: "conv1"
top: "pool1"
name: "pool1"
type: "Pooling"
pooling_param {
kernel_size: 3
stride: 2
pool: MAX
}
}
layer {
bottom: "pool1"
top: "res2a_branch1"
name: "res2a_branch1"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2a_branch1"
top: "res2a_branch1"
name: "bn2a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2a_branch1"
top: "res2a_branch1"
name: "scale2a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "pool1"
top: "res2a_branch2a"
name: "res2a_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "bn2a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "scale2a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "res2a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2b"
name: "res2a_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "bn2a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "scale2a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "res2a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2c"
name: "res2a_branch2c"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2a_branch2c"
top: "res2a_branch2c"
name: "bn2a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2a_branch2c"
top: "res2a_branch2c"
name: "scale2a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2a_branch1"
bottom: "res2a_branch2c"
top: "res2a"
name: "res2a"
type: "Eltwise"
}
layer {
bottom: "res2a"
top: "res2a"
name: "res2a_relu"
type: "ReLU"
}
layer {
bottom: "res2a"
top: "res2b_branch2a"
name: "res2b_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "bn2b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "scale2b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "res2b_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2b"
name: "res2b_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "bn2b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "scale2b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "res2b_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2c"
name: "res2b_branch2c"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2b_branch2c"
top: "res2b_branch2c"
name: "bn2b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2b_branch2c"
top: "res2b_branch2c"
name: "scale2b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2a"
bottom: "res2b_branch2c"
top: "res2b"
name: "res2b"
type: "Eltwise"
}
layer {
bottom: "res2b"
top: "res2b"
name: "res2b_relu"
type: "ReLU"
}
layer {
bottom: "res2b"
top: "res2c_branch2a"
name: "res2c_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "bn2c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "scale2c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "res2c_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2b"
name: "res2c_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "bn2c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "scale2c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "res2c_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2c"
name: "res2c_branch2c"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2c_branch2c"
top: "res2c_branch2c"
name: "bn2c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2c_branch2c"
top: "res2c_branch2c"
name: "scale2c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2b"
bottom: "res2c_branch2c"
top: "res2c"
name: "res2c"
type: "Eltwise"
}
layer {
bottom: "res2c"
top: "res2c"
name: "res2c_relu"
type: "ReLU"
}
layer {
bottom: "res2c"
top: "res3a_branch1"
name: "res3a_branch1"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res3a_branch1"
top: "res3a_branch1"
name: "bn3a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3a_branch1"
top: "res3a_branch1"
name: "scale3a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2c"
top: "res3a_branch2a"
name: "res3a_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "bn3a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "scale3a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "res3a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2b"
name: "res3a_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "bn3a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "scale3a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "res3a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2c"
name: "res3a_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3a_branch2c"
top: "res3a_branch2c"
name: "bn3a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3a_branch2c"
top: "res3a_branch2c"
name: "scale3a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3a_branch1"
bottom: "res3a_branch2c"
top: "res3a"
name: "res3a"
type: "Eltwise"
}
layer {
bottom: "res3a"
top: "res3a"
name: "res3a_relu"
type: "ReLU"
}
layer {
bottom: "res3a"
top: "res3b_branch2a"
name: "res3b_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "bn3b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "scale3b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "res3b_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2b"
name: "res3b_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "bn3b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "scale3b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "res3b_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3b_branch2b"
top: "res3b_branch2c"
name: "res3b_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b_branch2c"
top: "res3b_branch2c"
name: "bn3b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b_branch2c"
top: "res3b_branch2c"
name: "scale3b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3a"
bottom: "res3b_branch2c"
top: "res3b"
name: "res3b"
type: "Eltwise"
}
layer {
bottom: "res3b"
top: "res3b"
name: "res3b_relu"
type: "ReLU"
}
layer {
bottom: "res3b"
top: "res3c_branch2a"
name: "res3c_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3c_branch2a"
top: "res3c_branch2a"
name: "bn3c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3c_branch2a"
top: "res3c_branch2a"
name: "scale3c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3c_branch2a"
top: "res3c_branch2a"
name: "res3c_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3c_branch2a"
top: "res3c_branch2b"
name: "res3c_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res3c_branch2b"
top: "res3c_branch2b"
name: "bn3c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3c_branch2b"
top: "res3c_branch2b"
name: "scale3c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3c_branch2b"
top: "res3c_branch2b"
name: "res3c_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3c_branch2b"
top: "res3c_branch2c"
name: "res3c_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3c_branch2c"
top: "res3c_branch2c"
name: "bn3c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3c_branch2c"
top: "res3c_branch2c"
name: "scale3c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3b"
bottom: "res3c_branch2c"
top: "res3c"
name: "res3c"
type: "Eltwise"
}
layer {
bottom: "res3c"
top: "res3c"
name: "res3c_relu"
type: "ReLU"
}
layer {
bottom: "res3c"
top: "res3d_branch2a"
name: "res3d_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3d_branch2a"
top: "res3d_branch2a"
name: "bn3d_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3d_branch2a"
top: "res3d_branch2a"
name: "scale3d_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3d_branch2a"
top: "res3d_branch2a"
name: "res3d_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3d_branch2a"
top: "res3d_branch2b"
name: "res3d_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res3d_branch2b"
top: "res3d_branch2b"
name: "bn3d_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3d_branch2b"
top: "res3d_branch2b"
name: "scale3d_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3d_branch2b"
top: "res3d_branch2b"
name: "res3d_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3d_branch2b"
top: "res3d_branch2c"
name: "res3d_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3d_branch2c"
top: "res3d_branch2c"
name: "bn3d_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3d_branch2c"
top: "res3d_branch2c"
name: "scale3d_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3c"
bottom: "res3d_branch2c"
top: "res3d"
name: "res3d"
type: "Eltwise"
}
layer {
bottom: "res3d"
top: "res3d"
name: "res3d_relu"
type: "ReLU"
}
layer {
bottom: "res3d"
top: "res4a_branch1"
name: "res4a_branch1"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res4a_branch1"
top: "res4a_branch1"
name: "bn4a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4a_branch1"
top: "res4a_branch1"
name: "scale4a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3d"
top: "res4a_branch2a"
name: "res4a_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "bn4a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "scale4a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "res4a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2b"
name: "res4a_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "bn4a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "scale4a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "res4a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2c"
name: "res4a_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4a_branch2c"
top: "res4a_branch2c"
name: "bn4a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4a_branch2c"
top: "res4a_branch2c"
name: "scale4a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4a_branch1"
bottom: "res4a_branch2c"
top: "res4a"
name: "res4a"
type: "Eltwise"
}
layer {
bottom: "res4a"
top: "res4a"
name: "res4a_relu"
type: "ReLU"
}
layer {
bottom: "res4a"
top: "res4b_branch2a"
name: "res4b_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "bn4b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "scale4b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "res4b_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2b"
name: "res4b_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "bn4b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "scale4b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "res4b_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b_branch2b"
top: "res4b_branch2c"
name: "res4b_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b_branch2c"
top: "res4b_branch2c"
name: "bn4b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b_branch2c"
top: "res4b_branch2c"
name: "scale4b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4a"
bottom: "res4b_branch2c"
top: "res4b"
name: "res4b"
type: "Eltwise"
}
layer {
bottom: "res4b"
top: "res4b"
name: "res4b_relu"
type: "ReLU"
}
layer {
bottom: "res4b"
top: "res4c_branch2a"
name: "res4c_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4c_branch2a"
top: "res4c_branch2a"
name: "bn4c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4c_branch2a"
top: "res4c_branch2a"
name: "scale4c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4c_branch2a"
top: "res4c_branch2a"
name: "res4c_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4c_branch2a"
top: "res4c_branch2b"
name: "res4c_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4c_branch2b"
top: "res4c_branch2b"
name: "bn4c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4c_branch2b"
top: "res4c_branch2b"
name: "scale4c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4c_branch2b"
top: "res4c_branch2b"
name: "res4c_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4c_branch2b"
top: "res4c_branch2c"
name: "res4c_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4c_branch2c"
top: "res4c_branch2c"
name: "bn4c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4c_branch2c"
top: "res4c_branch2c"
name: "scale4c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b"
bottom: "res4c_branch2c"
top: "res4c"
name: "res4c"
type: "Eltwise"
}
layer {
bottom: "res4c"
top: "res4c"
name: "res4c_relu"
type: "ReLU"
}
layer {
bottom: "res4c"
top: "res4d_branch2a"
name: "res4d_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4d_branch2a"
top: "res4d_branch2a"
name: "bn4d_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4d_branch2a"
top: "res4d_branch2a"
name: "scale4d_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4d_branch2a"
top: "res4d_branch2a"
name: "res4d_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4d_branch2a"
top: "res4d_branch2b"
name: "res4d_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4d_branch2b"
top: "res4d_branch2b"
name: "bn4d_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4d_branch2b"
top: "res4d_branch2b"
name: "scale4d_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4d_branch2b"
top: "res4d_branch2b"
name: "res4d_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4d_branch2b"
top: "res4d_branch2c"
name: "res4d_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4d_branch2c"
top: "res4d_branch2c"
name: "bn4d_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4d_branch2c"
top: "res4d_branch2c"
name: "scale4d_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4c"
bottom: "res4d_branch2c"
top: "res4d"
name: "res4d"
type: "Eltwise"
}
layer {
bottom: "res4d"
top: "res4d"
name: "res4d_relu"
type: "ReLU"
}
layer {
bottom: "res4d"
top: "res4e_branch2a"
name: "res4e_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4e_branch2a"
top: "res4e_branch2a"
name: "bn4e_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4e_branch2a"
top: "res4e_branch2a"
name: "scale4e_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4e_branch2a"
top: "res4e_branch2a"
name: "res4e_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4e_branch2a"
top: "res4e_branch2b"
name: "res4e_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4e_branch2b"
top: "res4e_branch2b"
name: "bn4e_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4e_branch2b"
top: "res4e_branch2b"
name: "scale4e_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4e_branch2b"
top: "res4e_branch2b"
name: "res4e_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4e_branch2b"
top: "res4e_branch2c"
name: "res4e_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4e_branch2c"
top: "res4e_branch2c"
name: "bn4e_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4e_branch2c"
top: "res4e_branch2c"
name: "scale4e_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4d"
bottom: "res4e_branch2c"
top: "res4e"
name: "res4e"
type: "Eltwise"
}
layer {
bottom: "res4e"
top: "res4e"
name: "res4e_relu"
type: "ReLU"
}
layer {
bottom: "res4e"
top: "res4f_branch2a"
name: "res4f_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4f_branch2a"
top: "res4f_branch2a"
name: "bn4f_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4f_branch2a"
top: "res4f_branch2a"
name: "scale4f_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4f_branch2a"
top: "res4f_branch2a"
name: "res4f_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4f_branch2a"
top: "res4f_branch2b"
name: "res4f_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4f_branch2b"
top: "res4f_branch2b"
name: "bn4f_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4f_branch2b"
top: "res4f_branch2b"
name: "scale4f_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4f_branch2b"
top: "res4f_branch2b"
name: "res4f_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4f_branch2b"
top: "res4f_branch2c"
name: "res4f_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4f_branch2c"
top: "res4f_branch2c"
name: "bn4f_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4f_branch2c"
top: "res4f_branch2c"
name: "scale4f_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4e"
bottom: "res4f_branch2c"
top: "res4f"
name: "res4f"
type: "Eltwise"
}
layer {
bottom: "res4f"
top: "res4f"
name: "res4f_relu"
type: "ReLU"
}
#------------ RPN ------------
layer {
name: "rpn_conv_3x3"
type: "Convolution"
bottom: "res4f"
top: "rpn_output"
param { lr_mult: 1.0 decay_mult: 1.0 }
param { lr_mult: 2.0 decay_mult: 0 }
convolution_param {
num_output: 512
kernel_size: 3 pad: 1 stride: 1
weight_filler { type: "gaussian" std: 0.01 }
bias_filler { type: "constant" value: 0 }
}
}
layer {
name: "rpn_relu_3x3"
type: "ReLU"
bottom: "rpn_output"
top: "rpn_output"
}
layer {
name: "rpn_cls_score"
type: "Convolution"
bottom: "rpn_output"
top: "rpn_cls_score"
param { lr_mult: 1.0 decay_mult: 1.0 }
param { lr_mult: 2.0 decay_mult: 0 }
convolution_param {
num_output: 18 # 2(bg/fg) * 9(anchors)
kernel_size: 1 pad: 0 stride: 1
weight_filler { type: "gaussian" std: 0.01 }
bias_filler { type: "constant" value: 0 }
}
}
layer {
name: "rpn_bbox_pred"
type: "Convolution"
bottom: "rpn_output"
top: "rpn_bbox_pred"
param { lr_mult: 1.0 decay_mult: 1.0 }
param { lr_mult: 2.0 decay_mult: 0 }
convolution_param {
num_output: 36 # 4 * 9(anchors)
kernel_size: 1 pad: 0 stride: 1
weight_filler { type: "gaussian" std: 0.01 }
bias_filler { type: "constant" value: 0 }
}
}
layer {
bottom: "rpn_cls_score"
top: "rpn_cls_score_reshape"
name: "rpn_cls_score_reshape"
type: "Reshape"
reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } }
}
#------------ Anchor to Proposal ------------
layer {
name: "rpn_cls_prob"
type: "Softmax"
bottom: "rpn_cls_score_reshape"
top: "rpn_cls_prob"
}
layer {
name: 'rpn_cls_prob_reshape'
type: 'Reshape'
bottom: 'rpn_cls_prob'
top: 'rpn_cls_prob_reshape'
reshape_param { shape { dim: 0 dim: 18 dim: -1 dim: 0 } }
}
layer {
name: 'proposal'
type: 'Python'
bottom: 'rpn_cls_prob_reshape'
bottom: 'rpn_bbox_pred'
bottom: 'im_info'
top: 'rois'
python_param {
module: 'multitask_network_cascades.pylayer.proposal_layer'
layer: 'ProposalLayer'
param_str: "{'feat_stride': 16, 'gradient_scale': 1}"
}
}
#------------ Roi Warping ------------
layer {
name: "roi_interpolate_conv5"
type: "ROIWarping"
bottom: "res4f"
bottom: "rois"
top: "roi_interpolate_conv5"
roi_warping_param {
pooled_w: 14
pooled_h: 14
spatial_scale: 0.0625 # 1/16
}
}
#------------ Mask Estimation ------------
layer {
name: "fc6_maskest"
type: "InnerProduct"
bottom: "roi_interpolate_conv5"
top: "fc6_maskest"
param { name: "fc6_maskest_w"}
param { name: "fc6_maskest_b"}
inner_product_param {
num_output: 256
}
}
layer {
name: "relu6_maskest"
type: "ReLU"
bottom: "fc6_maskest"
top: "fc6_maskest"
}
layer {
name: "mask_pred"
type: "InnerProduct"
bottom: "fc6_maskest"
top: "mask_pred"
param { name: "mask_pred_w" }
param { name: "mask_pred_b" }
inner_product_param {
num_output: 441 # 21*21
}
}
layer {
name: "mask_output"
type: "Sigmoid"
bottom: "mask_pred"
top: "mask_output"
}
layer {
name: "mask_proposal"
type: 'Python'
bottom: 'mask_output'
top: 'mask_proposal'
python_param {
module: 'multitask_network_cascades.pylayer.mask_layer'
layer: 'MaskLayer'
}
}
layer {
name: "mask_resize"
type: "MaskResize"
bottom: "mask_proposal"
top: "mask_proposal_resize"
mask_resize_param {
output_height: 14
output_width: 14
}
}
#------------ Mask Features ------------
layer {
name: "mask_pooling"
type: "MaskPooling"
bottom: "roi_interpolate_conv5"
bottom: "mask_proposal_resize"
top: "roi_mask_conv5"
}
layer {
name: "roi_interpolate_conv5_mask"
type: "Pooling"
bottom: "roi_mask_conv5"
top: "roi_interpolate_conv5_mask"
pooling_param {
kernel_size: 2
stride: 1
pad: 0
pool: MAX
}
}
layer {
bottom: "roi_interpolate_conv5_mask"
top: "res5a_branch1"
name: "res5a_branch1"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res5a_branch1"
top: "res5a_branch1"
name: "bn5a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5a_branch1"
top: "res5a_branch1"
name: "scale5a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "roi_interpolate_conv5_mask"
top: "res5a_branch2a"
name: "res5a_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "bn5a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "scale5a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "res5a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2b"
name: "res5a_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "bn5a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "scale5a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "res5a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2c"
name: "res5a_branch2c"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res5a_branch2c"
top: "res5a_branch2c"
name: "bn5a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5a_branch2c"
top: "res5a_branch2c"
name: "scale5a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5a_branch1"
bottom: "res5a_branch2c"
top: "res5a"
name: "res5a"
type: "Eltwise"
}
layer {
bottom: "res5a"
top: "res5a"
name: "res5a_relu"
type: "ReLU"
}
layer {
bottom: "res5a"
top: "res5b_branch2a"
name: "res5b_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "bn5b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "scale5b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "res5b_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2b"
name: "res5b_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "bn5b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "scale5b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "res5b_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2c"
name: "res5b_branch2c"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res5b_branch2c"
top: "res5b_branch2c"
name: "bn5b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5b_branch2c"
top: "res5b_branch2c"
name: "scale5b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5a"
bottom: "res5b_branch2c"
top: "res5b"
name: "res5b"
type: "Eltwise"
}
layer {
bottom: "res5b"
top: "res5b"
name: "res5b_relu"
type: "ReLU"
}
layer {
bottom: "res5b"
top: "res5c_branch2a"
name: "res5c_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "bn5c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "scale5c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "res5c_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2b"
name: "res5c_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "bn5c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "scale5c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "res5c_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2c"
name: "res5c_branch2c"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res5c_branch2c"
top: "res5c_branch2c"
name: "bn5c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5c_branch2c"
top: "res5c_branch2c"
name: "scale5c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5b"
bottom: "res5c_branch2c"
top: "res5c"
name: "res5c"
type: "Eltwise"
}
layer {
bottom: "res5c"
top: "res5c"
name: "res5c_relu"
type: "ReLU"
}
layer {
bottom: "res5c"
top: "pool5"
name: "pool5"
type: "Pooling"
pooling_param {
kernel_size: 7
stride: 1
pool: AVE
}
}
#----- Mask-level Classification -----
layer {
name: "seg_cls_score"
type: "InnerProduct"
bottom: "pool5"
top: "seg_cls_score"
param {
name: "seg_cls_score_w"
}
param {
name: "seg_cls_score_b"
}
inner_product_param {
num_output: 2
}
}
layer {
name: "seg_cls_prob"
type: "Softmax"
bottom: "seg_cls_score"
top: "seg_cls_prob"
loss_param {
ignore_label: -1
normalize: true
}
}
#----- Bounding-box Regression -----
layer {
name: "bbox_pred"
type: "InnerProduct"
bottom: "pool5"
top: "bbox_pred"
param {
name: "bbox_pred_w"
}
param {
name: "bbox_pred_b"
}
inner_product_param {
num_output: 8
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment