Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
name: "SimpleTriNet"
layer {
name: "data"
type: "Module"
top: "anchor"
top: "negative"
top: "positive"
module_param {
module: "triplet_layers"
type: "MnistData"
param_str: "{ 'data': 'data/mnist_train_data.bin', 'labels': 'data/mnist_train_labels.bin', 'batch_size': 64 }"
}
}
########### Anchor
layer {
name: "conv1"
type: "Convolution"
bottom: "anchor"
top: "conv1"
param {
name: "conv1_w"
lr_mult: 1
}
param {
name: "conv1_b"
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
name: "conv2_w"
lr_mult: 1
}
param {
name: "conv2_b"
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
name: "ip1_w"
lr_mult: 1
}
param {
name: "ip1_b"
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
name: "ip2_w"
lr_mult: 1
}
param {
name: "ip2_b"
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "feat"
type: "InnerProduct"
bottom: "ip2"
top: "feat"
param {
name: "feat_w"
lr_mult: 1
}
param {
name: "feat_b"
lr_mult: 2
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
########### Positive
layer {
name: "conv1_p"
type: "Convolution"
bottom: "positive"
top: "conv1_p"
param {
name: "conv1_w"
lr_mult: 1
}
param {
name: "conv1_b"
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1_p"
type: "Pooling"
bottom: "conv1_p"
top: "pool1_p"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_p"
type: "Convolution"
bottom: "pool1_p"
top: "conv2_p"
param {
name: "conv2_w"
lr_mult: 1
}
param {
name: "conv2_b"
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2_p"
type: "Pooling"
bottom: "conv2_p"
top: "pool2_p"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1_p"
type: "InnerProduct"
bottom: "pool2_p"
top: "ip1_p"
param {
name: "ip1_w"
lr_mult: 1
}
param {
name: "ip1_b"
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_p"
type: "ReLU"
bottom: "ip1_p"
top: "ip1_p"
}
layer {
name: "ip2_p"
type: "InnerProduct"
bottom: "ip1_p"
top: "ip2_p"
param {
name: "ip2_w"
lr_mult: 1
}
param {
name: "ip2_b"
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "feat_p"
type: "InnerProduct"
bottom: "ip2_p"
top: "feat_p"
param {
name: "feat_w"
lr_mult: 1
}
param {
name: "feat_b"
lr_mult: 2
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
########### Negative
layer {
name: "conv1_n"
type: "Convolution"
bottom: "negative"
top: "conv1_n"
param {
name: "conv1_w"
lr_mult: 1
}
param {
name: "conv1_b"
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1_n"
type: "Pooling"
bottom: "conv1_n"
top: "pool1_n"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_n"
type: "Convolution"
bottom: "pool1_n"
top: "conv2_n"
param {
name: "conv2_w"
lr_mult: 1
}
param {
name: "conv2_b"
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2_n"
type: "Pooling"
bottom: "conv2_n"
top: "pool2_n"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1_n"
type: "InnerProduct"
bottom: "pool2_n"
top: "ip1_n"
param {
name: "ip1_w"
lr_mult: 1
}
param {
name: "ip1_b"
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_n"
type: "ReLU"
bottom: "ip1_n"
top: "ip1_n"
}
layer {
name: "ip2_n"
type: "InnerProduct"
bottom: "ip1_n"
top: "ip2_n"
param {
name: "ip2_w"
lr_mult: 1
}
param {
name: "ip2_b"
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "feat_n"
type: "InnerProduct"
bottom: "ip2_n"
top: "feat_n"
param {
name: "feat_w"
lr_mult: 1
}
param {
name: "feat_b"
lr_mult: 2
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "Module"
bottom: "feat"
bottom: "feat_p"
bottom: "feat_n"
top: "loss"
threshold_param {
threshold: 0.2
}
module_param {
module: "triplet_layers"
type: "TripletLoss"
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment