Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save hichamjanati/0b227e9f18814a8e367664f118fe45ee to your computer and use it in GitHub Desktop.
Save hichamjanati/0b227e9f18814a8e367664f118fe45ee to your computer and use it in GitHub Desktop.
"""
================================================================
Compute sparse inverse solution with mixed norm: MxNE and irMxNE
================================================================
Runs an (ir)MxNE (L1/L2 [1]_ or L0.5/L2 [2]_ mixed norm) inverse solver.
L0.5/L2 is done with irMxNE which allows for sparser
source estimates with less amplitude bias due to the non-convexity
of the L0.5/L2 mixed norm penalty.
References
----------
.. [1] Gramfort A., Kowalski M. and Hamalainen, M.
"Mixed-norm estimates for the M/EEG inverse problem using accelerated
gradient methods", Physics in Medicine and Biology, 2012.
https://doi.org/10.1088/0031-9155/57/7/1937.
.. [2] Strohmeier D., Haueisen J., and Gramfort A.
"Improved MEG/EEG source localization with reweighted mixed-norms",
4th International Workshop on Pattern Recognition in Neuroimaging,
Tuebingen, 2014. 10.1109/PRNI.2014.6858545
"""
#
# License: BSD (3-clause)
import numpy as np
import mne
from mne.datasets import sample
from mne.inverse_sparse import mixed_norm, make_stc_from_dipoles
from mne.minimum_norm import make_inverse_operator, apply_inverse
from mne.viz import (plot_sparse_source_estimates,
plot_dipole_locations, plot_dipole_amplitudes)
print(__doc__)
data_path = sample.data_path()
fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
ave_fname = data_path + '/MEG/sample/sample_audvis-ave.fif'
cov_fname = data_path + '/MEG/sample/sample_audvis-shrunk-cov.fif'
subjects_dir = data_path + '/subjects'
# Read noise covariance matrix
cov = mne.read_cov(cov_fname)
# Handling average file
condition = 'Right Auditory'
# condition = 'Left Auditory'
evoked = mne.read_evokeds(ave_fname, condition=condition, baseline=(None, 0))
evoked.crop(tmin=0, tmax=0.3)
# Handling forward solution
forward = mne.read_forward_solution(fwd_fname)
###############################################################################
# Run solver
if condition =='Left Auditory':
alpha = 55 # regularization parameter between 0 and 100 (100 is high)
else:
alpha = 29.5 # regularization parameter between 0 and 100 (100 is high)
loose, depth = 0.2, 0.9 # loose orientation & depth weighting
n_mxne_iter = 10 # if > 1 use L0.5/L2 reweighted mixed norm solver
# if n_mxne_iter > 1 dSPM weighting can be avoided.
# Compute dSPM solution to be used as weights in MxNE
inverse_operator = make_inverse_operator(evoked.info, forward, cov,
depth=depth, fixed=True,
use_cps=True)
stc_dspm = apply_inverse(evoked, inverse_operator, lambda2=1. / 9.,
method='dSPM')
# Compute (ir)MxNE inverse solution with dipole output
dipoles, residual = mixed_norm(
evoked, forward, cov, alpha, loose=loose, depth=depth, maxit=3000,
tol=1e-4, active_set_size=10, debias=True, weights=stc_dspm,
weights_min=8., n_mxne_iter=n_mxne_iter, return_residual=True,
return_as_dipoles=True)
###############################################################################
# Plot dipole location of the strongest dipole with MRI slices
idx = np.argmax([np.max(np.abs(dip.amplitude)) for dip in dipoles])
# Plot residual
ylim = dict(eeg=[-10, 10], grad=[-400, 400], mag=[-600, 600])
###############################################################################
# Generate stc from dipoles
stc = make_stc_from_dipoles(dipoles, forward['src'])
###############################################################################
# View in 2D and 3D ("glass" brain like 3D plot)
solver = "MxNE" if n_mxne_iter == 1 else "irMxNE"
plot_sparse_source_estimates(forward['src'], stc, bgcolor=(1, 1, 1),
fig_name="%s (cond %s)" % (solver, condition),
opacity=0.1)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment