Skip to content

Instantly share code, notes, and snippets.

@hiratara
Last active December 11, 2015 23:08
Show Gist options
  • Save hiratara/4674200 to your computer and use it in GitHub Desktop.
Save hiratara/4674200 to your computer and use it in GitHub Desktop.
(write "Hello, scheme!")
{-# LANGUAGE ExistentialQuantification #-}
module Main (main) where
import qualified Text.ParserCombinators.Parsec as P
import qualified Text.ParserCombinators.Parsec.Token as T
import qualified System.Environment as ENV
import qualified Control.Monad as M
import qualified Control.Monad.Error as E
import qualified System.IO as IO
import qualified Data.IORef as R
main :: IO ()
main = do args <- ENV.getArgs
if null args then runRepl else runOne $ args
data LispVal = Atom String
| List [LispVal]
| DottedList [LispVal] LispVal
| Number Integer
| String String
| Bool Bool
| PrimitiveFunc ([LispVal] -> ThrowsError LispVal)
| Func {params :: [String], vararg :: (Maybe String),
body :: [LispVal], closure :: Env}
| IOFunc ([LispVal] -> IOThrowsError LispVal)
| Port IO.Handle
showVal :: LispVal -> String
showVal (String contents) = "\"" ++ contents ++ "\""
showVal (Atom name) = name
showVal (Number contents) = show contents
showVal (Bool True) = "#t"
showVal (Bool False) = "#f"
showVal (List contents) = "(" ++ unwordsList contents ++ ")"
showVal (DottedList head tail) = "(" ++ unwordsList head ++ " . " ++ showVal tail ++ ")"
showVal (PrimitiveFunc _) = "<primitive>"
showVal (Func {params = args, vararg = varargs, body = body, closure = env}) =
"(lambda (" ++ unwords (map show args) ++
(case varargs of
Nothing -> ""
Just arg -> " . " ++ arg) ++ ") ...)"
showVal (IOFunc _) = "<IO primitive>"
showVal (Port _) = "<IO port>"
unwordsList :: [LispVal] -> String
unwordsList = unwords . map showVal
instance Show LispVal where show = showVal
data LispError = NumArgs Integer [LispVal]
| TypeMismatch String LispVal
| Parser P.ParseError
| BadSpecialForm String LispVal
| NotFunction String String
| UnboundVar String String
| Default String
showError :: LispError -> String
showError (UnboundVar message varname) = message ++ ": " ++ varname
showError (BadSpecialForm message form) = message ++ ": " ++ show form
showError (NotFunction message func) = message ++ ": " ++ show func
showError (NumArgs expected found) = "Expected " ++ show expected
++ " args; found values " ++ unwordsList found
showError (TypeMismatch expected found) = "Invalid type: expected " ++ expected
++ ", found " ++ show found
showError (Parser parseErr) = "Parse error at " ++ show parseErr
instance Show LispError where show = showError
instance E.Error LispError where
noMsg = Default "An error has occurred"
strMsg = Default
type ThrowsError = Either LispError
trapError :: (E.MonadError e m, Show e) => m String -> m String
trapError action = E.catchError action (return . show)
extractValue :: ThrowsError a -> a
extractValue (Right val) = val
symbol :: P.Parser Char
symbol = P.oneOf "!#$%&|*+-/:<=>?@^_~"
spaces' :: P.Parser ()
spaces' = P.skipMany1 P.space
parseString :: P.Parser LispVal
parseString = do _ <- P.char '"'
x <- P.many (P.noneOf "\"")
_ <- P.char '"'
return (String x)
parseAtom :: P.Parser LispVal
parseAtom = do first <- P.letter P.<|> symbol
rest <- P.many (P.letter P.<|> P.digit P.<|> symbol)
let atom = first:rest
return $ case atom of
"#t" -> Bool True
"#f" -> Bool False
_ -> Atom atom
parseNumber :: P.Parser LispVal
parseNumber = M.liftM (Number . read) $ P.many1 P.digit
parseList :: P.Parser LispVal
parseList = M.liftM List $ P.sepBy parseExpr P.spaces
parseDottedList :: P.Parser LispVal
parseDottedList = do
head <- P.endBy parseExpr spaces'
tail <- P.char '.' >> spaces' >> parseExpr
return $ DottedList head tail
parseQuoted :: P.Parser LispVal
parseQuoted = do
P.char '\''
x <- parseExpr
return $ List [Atom "quote", x]
parseExpr :: P.Parser LispVal
parseExpr = parseAtom P.<|> parseString P.<|> parseNumber
P.<|> parseQuoted
P.<|> do _ <- P.char '('
x <- P.try parseList P.<|> parseDottedList
_ <- P.char ')'
return x
readOrThrow :: P.Parser a -> String -> ThrowsError a
readOrThrow parser input = case P.parse parser "lisp" input of
Left err -> E.throwError $ Parser err
Right val -> return val
readExpr :: String -> ThrowsError LispVal
readExpr = readOrThrow parseExpr
readExprList :: String -> ThrowsError [LispVal]
readExprList = readOrThrow (P.endBy parseExpr spaces')
eval :: Env -> LispVal -> IOThrowsError LispVal
eval _ val@(String _) = return val
eval _ val@(Number _) = return val
eval _ val@(Bool _) = return val
eval env (Atom id) = getVar env id
eval _ (List [Atom "quote", val]) = return val
eval env (List [Atom "if", pred, conseq, alt]) =
do result <- eval env pred
case result of
Bool False -> eval env alt
otherwise -> eval env conseq
eval env (List [Atom "set!", Atom var, form]) =
eval env form >>= setVar env var
eval env (List [Atom "define", Atom var, form]) =
eval env form >>= defineVar env var
eval env (List (Atom "define" : List (Atom var : params) : body)) =
makeNormalFunc env params body >>= defineVar env var
eval env (List (Atom "define" : DottedList (Atom var : params) varargs : body)) =
makeVarargs varargs env params body >>= defineVar env var
eval env (List (Atom "lambda" : List params : body)) =
makeNormalFunc env params body
eval env (List (Atom "lambda" : DottedList params varargs : body)) =
makeVarargs varargs env params body
eval env (List (Atom "lambda" : varargs@(Atom _) : body)) =
makeVarargs varargs env [] body
eval env (List [Atom "load", String filename]) =
load filename >>= M.liftM last . mapM (eval env)
eval env (List (function : args)) = do
func <- eval env function
argVals <- M.mapM (eval env) args
apply func argVals
eval _ badForm = E.throwError $
BadSpecialForm "Unrecognized special form" badForm
makeFunc :: Maybe String -> Env -> [LispVal] -> [LispVal] ->
IOThrowsError LispVal
makeFunc varargs env params body = return $
Func (map showVal params) varargs body env
makeNormalFunc :: Env -> [LispVal] -> [LispVal] -> IOThrowsError LispVal
makeNormalFunc = makeFunc Nothing
makeVarargs :: LispVal -> Env -> [LispVal] -> [LispVal] ->
IOThrowsError LispVal
makeVarargs = makeFunc . Just . showVal
apply :: LispVal -> [LispVal] -> IOThrowsError LispVal
apply (PrimitiveFunc func) args = liftThrows $ func args
apply (Func params varargs body closure) args =
if num params /= num args && varargs == Nothing
then E.throwError $ NumArgs (num params) args
else (E.liftIO $ bindVars closure $ zip params args) >>= bindVarArgs varargs >>= evalBody
where
remainingArgs = drop (length params) args
num = toInteger . length
evalBody env = M.liftM last $ mapM (eval env) body
bindVarArgs arg env = case arg of
Just argName -> E.liftIO $ bindVars env [(argName, List $ remainingArgs)]
Nothing -> return env
apply (IOFunc func) args = func args
primitiveBindings :: IO Env
primitiveBindings = nullEnv
>>= (flip bindVars $
map (makeFunc PrimitiveFunc) primitives)
>>= (flip bindVars $
map (makeFunc IOFunc) ioPrimitives)
where makeFunc constractor (var, func) = (var, constractor func)
primitives :: [(String, [LispVal] -> ThrowsError LispVal)]
primitives = [("+", numericBinop (+)),
("-", numericBinop (-)),
("*", numericBinop (*)),
("/", numericBinop div),
("mod", numericBinop mod),
("quotient", numericBinop quot),
("remainder", numericBinop rem),
("=", numBoolBinop (==)),
("<", numBoolBinop (<)),
(">", numBoolBinop (>)),
("/=", numBoolBinop (/=)),
(">=", numBoolBinop (>=)),
("<=", numBoolBinop (<=)),
("&&", boolBoolBinop (&&)),
("||", boolBoolBinop (||)),
("string=?", strBoolBinop (==)),
("string<?", strBoolBinop (<)),
("string>?", strBoolBinop (>)),
("string<=?", strBoolBinop (<=)),
("string>=?", strBoolBinop (>=)),
("car", car),
("cdr", cdr),
("cons", cons),
("eq?", eqv),
("eqv?", eqv),
("equal?", equal)]
numericBinop :: (Integer -> Integer -> Integer) ->
[LispVal] -> ThrowsError LispVal
numericBinop op params = mapM unpackNum params >>= return . Number . foldl1 op
boolBinop :: (LispVal -> ThrowsError a) -> (a -> a -> Bool) ->
[LispVal] -> ThrowsError LispVal
boolBinop unpacker op args = if length args /= 2
then E.throwError $ NumArgs 2 args
else do left <- unpacker $ args !! 0
right <- unpacker $ args !! 1
return $ Bool $ left `op` right
numBoolBinop :: (Integer -> Integer -> Bool) ->
[LispVal] -> ThrowsError LispVal
numBoolBinop = boolBinop unpackNum
strBoolBinop :: (String -> String -> Bool) ->
[LispVal] -> ThrowsError LispVal
strBoolBinop = boolBinop unpackStr
boolBoolBinop :: (Bool -> Bool -> Bool) ->
[LispVal] -> ThrowsError LispVal
boolBoolBinop = boolBinop unpackBool
unpackNum :: LispVal -> ThrowsError Integer
unpackNum (Number n) = return n
unpackNum (String n) = let parsed = reads n in
if null parsed
then E.throwError $ TypeMismatch "number" $ String n
else return . fst $ parsed !! 0
unpackNum (List [n]) = unpackNum n
unpackNum notNum = E.throwError $ TypeMismatch "number" notNum
unpackStr :: LispVal -> ThrowsError String
unpackStr (String s) = return s
unpackStr (Number s) = return $ show s
unpackStr (Bool s) = return $ show s
unpackStr notString = E.throwError $ TypeMismatch "string" notString
unpackBool :: LispVal -> ThrowsError Bool
unpackBool (Bool b) = return b
unpackBool notBool = E.throwError $ TypeMismatch "boolean" notBool
car :: [LispVal] -> ThrowsError LispVal
car [List (x : xs)] = return x
car [DottedList (x : xs) _] = return x
car [badArg] = E.throwError $ TypeMismatch "pair" badArg
car badArgList = E.throwError $ NumArgs 1 badArgList
cdr :: [LispVal] -> ThrowsError LispVal
cdr [List (x : xs)] = return $ List xs
cdr [DottedList [xs] x] = return x
cdr [DottedList (_ : xs) x] = return $ DottedList xs x
cdr [badArg] = E.throwError $ TypeMismatch "pair" badArg
cdr badArgList = E.throwError $ NumArgs 1 badArgList
cons :: [LispVal] -> ThrowsError LispVal
cons [x1, List []] = return $ List [x1]
cons [x, List xs] = return $ List $ x : xs
cons [x, DottedList xs xlast] = return $ DottedList (x : xs) xlast
cons [x1, x2] = return $ DottedList [x1] x2
cons badArgList = E.throwError $ NumArgs 2 badArgList
eqv :: [LispVal] -> ThrowsError LispVal
eqv [(Bool arg1), (Bool arg2)] = return $ Bool $ arg1 == arg2
eqv [(Number arg1), (Number arg2)] = return $ Bool $ arg1 == arg2
eqv [(String arg1), (String arg2)] = return $ Bool $ arg1 == arg2
eqv [(Atom arg1), (Atom arg2)] = return $ Bool $ arg1 == arg2
eqv [(DottedList xs x), (DottedList ys y)] = eqv [List $ xs ++ [x], List $ ys ++ [y]]
eqv [(List arg1), (List arg2)] = return $ Bool $ (length arg1 == length arg2) &&
(all eqvPair $ zip arg1 arg2)
where eqvPair (x1, x2) = case eqv [x1, x2] of
Left err -> False
Right (Bool val) -> val
eqv [_, _] = return $ Bool False
eqv badArgList = E.throwError $ NumArgs 2 badArgList
data Unpacker = forall a. Eq a => AnyUnpacker (LispVal -> ThrowsError a)
unpackEquals :: LispVal -> LispVal -> Unpacker -> ThrowsError Bool
unpackEquals arg1 arg2 (AnyUnpacker unpacker) =
do unpacked1 <- unpacker arg1
unpacked2 <- unpacker arg2
return $ unpacked1 == unpacked2
`E.catchError` (const $ return False)
equal :: [LispVal] -> ThrowsError LispVal
equal [arg1, arg2] = do
primitiveEquals <- M.liftM or $ M.mapM (unpackEquals arg1 arg2)
[AnyUnpacker unpackNum, AnyUnpacker unpackStr, AnyUnpacker unpackBool]
eqvEquals <- eqv [arg1, arg2]
return $ Bool $ (primitiveEquals || let (Bool x) = eqvEquals in x)
equal badArgList = E.throwError $ NumArgs 2 badArgList
flushStr :: String -> IO ()
flushStr str = putStr str >> IO.hFlush IO.stdout
readPrompt :: String -> IO String
readPrompt prompt = flushStr prompt >> getLine
evalString :: Env -> String -> IO String
evalString env expr = runIOThrows . M.liftM show $
liftThrows (readExpr expr) >>= eval env
evalAndPrint :: Env -> String -> IO ()
evalAndPrint env = (>>= putStrLn) . evalString env
until_ :: Monad m => (a -> Bool) -> m a -> (a -> m ()) -> m ()
until_ pred prompt action = do
result <- prompt
if pred result
then return ()
else action result >> until_ pred prompt action
runOne :: [String] -> IO ()
runOne args = do
let file = head args
let argVals = map String $ drop 1 args
env <- primitiveBindings >>= flip bindVars [("args", List argVals)]
(runIOThrows $ M.liftM show $ eval env (List [Atom "load", String file]))
>>= IO.hPutStrLn IO.stderr
runRepl :: IO ()
runRepl = primitiveBindings >>=
until_ (== "quit") (readPrompt "Lisp>>> ") . evalAndPrint
type Env = R.IORef [(String, R.IORef LispVal)]
nullEnv :: IO Env
nullEnv = R.newIORef []
type IOThrowsError = E.ErrorT LispError IO
liftThrows :: ThrowsError a -> IOThrowsError a
liftThrows (Left err) = E.throwError err
liftThrows (Right val) = return val
runIOThrows :: IOThrowsError String -> IO String
runIOThrows action = E.runErrorT (trapError action) >>= return . extractValue
isBound :: Env -> String -> IO Bool
isBound envRef var = R.readIORef envRef >>= return . maybe False (const True) . lookup var
getVar :: Env -> String -> IOThrowsError LispVal
getVar envRef var = do env <- E.liftIO $ R.readIORef envRef
maybe
(E.throwError $
UnboundVar "Getting an unbound variable: " var)
(E.liftIO . R.readIORef)
(lookup var env)
setVar :: Env -> String -> LispVal -> IOThrowsError LispVal
setVar envRef var value = do
env <- E.liftIO $ R.readIORef envRef
maybe
(E.throwError $ UnboundVar "Setting an unbound variable: " var)
(E.liftIO . (flip R.writeIORef value))
(lookup var env)
return value
defineVar :: Env -> String -> LispVal -> IOThrowsError LispVal
defineVar envRef var value = do
alreadyDefined <- E.liftIO $ isBound envRef var
if alreadyDefined
then setVar envRef var value >> return value
else E.liftIO $ do
valueRef <- R.newIORef value
env <- R.readIORef envRef
R.writeIORef envRef ((var, valueRef) : env)
return value
bindVars :: Env -> [(String, LispVal)] -> IO Env
bindVars envRef bindings = R.readIORef envRef >>= extendEnv bindings
>>= R.newIORef
where extendEnv bindings env = M.liftM (++ env) (mapM addBinding bindings)
addBinding (var, value) = do ref <- R.newIORef value
return (var, ref)
ioPrimitives :: [(String, [LispVal] -> IOThrowsError LispVal)]
ioPrimitives = [("apply", applyProc),
("open-input-file", makePort IO.ReadMode),
("open-output-file", makePort IO.WriteMode),
("close-input-port", closePort),
("close-output-port", closePort),
("read", readProc),
("write", writeProc),
("read-contents", readContents),
("read-all", readAll)]
applyProc :: [LispVal] -> IOThrowsError LispVal
applyProc [func, List args] = apply func args
applyProc (func : args) = apply func args
makePort :: IO.IOMode -> [LispVal] -> IOThrowsError LispVal
makePort mode [String filename] = M.liftM Port $ E.liftIO $
IO.openFile filename mode
closePort :: [LispVal] -> IOThrowsError LispVal
closePort [Port port] = E.liftIO $ IO.hClose port >> (return $ Bool True)
closePort _ = return $ Bool False
readProc :: [LispVal] -> IOThrowsError LispVal
readProc [] = readProc [Port IO.stdin]
readProc [Port port] = (E.liftIO $ IO.hGetLine port) >>= liftThrows . readExpr
writeProc :: [LispVal] -> IOThrowsError LispVal
writeProc [obj] = writeProc [obj, Port IO.stdout]
writeProc [obj, Port port] = E.liftIO $ IO.hPrint port obj >>
(return $ Bool True)
readContents :: [LispVal] -> IOThrowsError LispVal
readContents [String filename] = M.liftM String $ E.liftIO $ readFile filename
load :: String -> IOThrowsError [LispVal]
load filename = (E.liftIO $ readFile filename) >>= liftThrows . readExprList
readAll :: [LispVal] -> IOThrowsError LispVal
readAll [String filename] = M.liftM List $ load filename
(define (not x) (if x #f #t))
(define (null? obj) (if (eqv? obj '()) #t #f))
(define (list . objs) objs)
(define (id obj) obj)
(define (flip func) (lambda (arg1 arg2) (func arg2 arg1)))
(define (curry func arg1) (lambda (arg) (apply func (cons arg1 (list arg)))))
(define (compose f g) (lambda (arg) (f (apply g arg))))
(define zero? (curry = 0))
(define positive? (curry < 0))
(define negative? (curry > 0))
(define (odd? num) (= (mod num 2) 1))
(define (even? num) (= (mod num 2) 0))
(define (foldr func end lst)
(if (null? lst)
end
(func (car lst) (foldr func end (cdr lst)))))
(define (foldl func accum lst)
(if (null? lst)
accum
(foldl func (func accum (car lst)) (cdr lst))))
(define fold foldl)
(define reduce fold)
(define (unfold func init pred)
(if (pred init)
(cons init '())
(cons init (unfold func (func init) pred))))
(define (sum . lst) (fold + 0 lst))
(define (product . lst) (fold * 1 lst))
(define (and . lst) (fold && #t lst))
(define (or . lst) (fold || #f lst))
(define (max first . rest) (fold (lambda (old new) (if (> old new) old new)) first rest))
(define (min first . rest) (fold (lambda (old new) (if (< old new) old new)) first rest))
(define (length lst) (fold (lambda (x y) (+ x 1)) 0 lst))
(define (reverse lst) (fold (flip cons) '() lst))
(define (mem-helper pred op) (lambda (acc next) (if (and (not acc) (pred (op next))) next acc)))
(define (memq obj lst) (fold (mem-helper (curry eq? obj) id) #f lst))
(define (memv obj lst) (fold (mem-helper (curry eqv? obj) id) #f lst))
(define (member obj lst) (fold (mem-helper (curry equal? obj) id) #f lst))
(define (assq obj alist) (fold (mem-helper (curry eq? obj) car) #f alist))
(define (assv obj alist) (fold (mem-helper (curry eqv? obj) car) #f alist))
(define (assoc obj alist) (fold (mem-helper (curry equal? obj) car) #f alist))
(define (map func lst) (foldr (lambda (x y) (cons (func x) y)) '() lst))
(define (filter pred lst) (foldr (lambda (x y) (if (pred x) (cons x y) y)) '() lst))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment