Skip to content

Instantly share code, notes, and snippets.

@homam
Last active August 29, 2015 14:07
Show Gist options
  • Save homam/ec982bc6be4c7b72b2f9 to your computer and use it in GitHub Desktop.
Save homam/ec982bc6be4c7b72b2f9 to your computer and use it in GitHub Desktop.
Statistics, Probability, Confidence Interval
{sqrt} = require \prelude-ls
{
find-propability-of-population-mean-in-a-range-for-continuous-variable
find-confidence-interval-of-population-mean-for-continuous-variable
find-propability-of-population-mean-in-a-range-for-binomial-variable
find-confidence-interval-of-population-mean-for-binomial-variable
} = require \./stats
round = (precision, n) -->
tens = 10**precision
(Math.round <| n * tens) / tens
prob = find-propability-of-population-mean-in-a-range-for-continuous-variable do
36 # sample size
112 # sample mu
40 # sample sigma
[100, 124] # lower and upper
console.log "Prob = #prob \n#{0.93 == round 2 prob}\n"
[lower, upper] = find-confidence-interval-of-population-mean-for-continuous-variable do
36 # sample size
112 # sampel mu
40 # sample sigma
0.9281394664049833 # confidence
console.log "CI = #{[lower, upper]} \n#{100 == round 2 lower and 124 == round 2 upper}\n"
[lower, upper] = find-confidence-interval-of-population-mean-for-binomial-variable do
250 # sample size
142 # successes
0.99 # confidence
console.log "CI = #{[lower, upper]} \n#{0.49 == round 2 lower and 0.65 == round 2 upper}\n"
prob = find-propability-of-population-mean-in-a-range-for-binomial-variable do
250 # sample size
142 # successes
[0.4872965881321945, 0.6487034118678054] # bounds
console.log "Prob = #prob \n#{0.99 == round 2 prob}\n"
[lower, upper] = find-confidence-interval-of-population-mean-for-continuous-variable do
60 # sample size
7.177 # sample mu
sqrt 8.691 # sample sigma
0.95 # confidence
console.log "CI = #{[lower, upper]} \n#{6.43 == round 2 lower and 7.92 == round 2 upper}\n"
{mean, fix, map, filter, sum, sqrt, abs, exp} = require \prelude-ls
statistics = (arr, sample = false) ->
length = arr.length
average = mean arr
sigma = arr |> map (-> (it - average) * (it - average)) |> sum |> (/ (length - if sample then 1 else 0)) |> sqrt
[length, average, sigma]
random = (lower, upper) -->
Math.round <| Math.random! * (upper - lower) + lower
make-sample = (how-many, arr) -->
size = arr.length - 1
how-many |>
fix (next) -> (how-many) ->
return [] if how-many == 0
[arr[random 0, size]] ++ next how-many - 1
normal-cdf = (avg, sigma, x) -->
z = (x - avg) / sqrt 2 * sigma * sigma
t = 1 / (1 + 0.3275911 * abs z)
a1 = 0.254829592
a2 = -0.284496736
a3 = 1.421413741
a4 = -1.453152027
a5 = 1.061405429
erf = 1 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * (exp -z * z)
sign = if z < 0 then -1 else 1
(1 / 2) * (1 + sign * erf)
standard-normal-cdf = normal-cdf 0, 1
derivitive = (delta, f, x) -->
((f <| x + delta) - (f x)) / delta
newton = (precision, f, x0) -->
df = derivitive precision/10, f
x0 |>
fix (next) -> (x0) ->
dfx = df x0
return next Math.random! if (abs dfx) < precision
x = x0 - ( (f x0) / dfx )
return x if (abs <| x - x0) <= precision
next x
# generic functions
find-propability-of-population-mean-in-a-range = (sample-mu, samples-means-sigma, [lower, upper]) -->
standard-upper = (upper - sample-mu) / samples-means-sigma
standard-lower = (lower - sample-mu) / samples-means-sigma
(standard-normal-cdf standard-upper) - (standard-normal-cdf standard-lower)
find-confidence-interval-of-population-mean = (sample-mu, samples-means-sigma, confidence) -->
calculate-confidence = find-propability-of-population-mean-in-a-range sample-mu, samples-means-sigma
delta = samples-means-sigma/1000
f = (d) ->
interval = [sample-mu - d, sample-mu + d]
(calculate-confidence interval) - confidence
d = newton 0.0001, f, 0
[sample-mu - d, sample-mu + d]
# continuous variable
find-propability-of-population-mean-in-a-range-for-continuous-variable = (sample-size, sample-mu, sample-sigma, [lower, upper]) -->
find-propability-of-population-mean-in-a-range do
sample-mu
(sample-sigma / sqrt sample-size)
[lower, upper]
find-confidence-interval-of-population-mean-for-continuous-variable = (sample-size, sample-mu, sample-sigma, confidence) -->
find-confidence-interval-of-population-mean do
sample-mu
(sample-sigma / sqrt sample-size)
confidence
# binomial variable
find-propability-of-population-mean-in-a-range-for-binomial-variable = (sample-size, successes, [lower, upper]) -->
find-propability-of-population-mean-in-a-range do
successes / sample-size
sqrt(sample-size * (successes/sample-size) * (1 - (successes/sample-size))) /sample-size
[lower, upper]
find-confidence-interval-of-population-mean-for-binomial-variable = (sample-size, successes, confidence) -->
find-confidence-interval-of-population-mean do
successes / sample-size
sqrt(sample-size * (successes/sample-size) * (1 - (successes/sample-size))) /sample-size
confidence
exports = exports or this
exports <<< {
statistics
random
make-sample
normal-cdf
standard-normal-cdf
derivitive
newton
find-propability-of-population-mean-in-a-range-for-continuous-variable
probability-of-continuous-mean: find-propability-of-population-mean-in-a-range-for-continuous-variable
find-confidence-interval-of-population-mean-for-continuous-variable
ci-of-continuous-mean: find-confidence-interval-of-population-mean-for-continuous-variable
find-propability-of-population-mean-in-a-range-for-binomial-variable
probability-of-binomial-mean: find-propability-of-population-mean-in-a-range-for-binomial-variable
find-confidence-interval-of-population-mean-for-binomial-variable
ci-of-continuous-mean: find-confidence-interval-of-population-mean-for-binomial-variable
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment