Skip to content

Instantly share code, notes, and snippets.

View remove-footer.html
View show-header-menu.html
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
<script>
var lastScrollTop = 0;
$(window).scroll(function(event){
var st = $(this).scrollTop();
if (st > lastScrollTop){
// downscroll code
$('#site-navigation').removeClass('fixed-menu');
View fix-header.css
.fixed-menu {
position:fixed;
top:0;
padding:30px 0px 0px 0px;
z-index: 99999;
width: 100%;
display:block;
}
View 2layerNN.py
import numpy as np
# sigmoid function
def nonlin(x, deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.exp(-x))
# input dataset
X = np.array([ [0,0,1],
View dl11.py
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1
syn1 = 2*np.random.random((4,1)) - 1
for j in xrange(60000):
l1 = 1/(1+np.exp(-(np.dot(X,syn0))))
l2 = 1/(1+np.exp(-(np.dot(l1,syn1))))
l2_delta = (y - l2)*(l2*(1-l2))
l1_delta = l2_delta.dot(syn1.T) * (l1 * (1-l1))
syn1 += l1.T.dot(l2_delta)
View medium5.py
def dual_encoder_model(hparams, mode, context, context_len, utterance, utterance_len, targets):
# Initialize embedidngs randomly or with pre-trained vectors if available
embeddings_W = get_embeddings(hparams)
# Embed the context and the utterance
context_embedded = tf.nn.embedding_lookup(embeddings_W, context, name="embed_context")
utterance_embedded = tf.nn.embedding_lookup(embeddings_W, utterance, name="embed_utterance")
# Build the RNN
with tf.variable_scope("rnn") as vs:
# We use an LSTM Cell
cell = tf.nn.rnn_cell.LSTMCell(hparams.rnn_dim, forget_bias=2.0, use_peepholes=True, state_is_tuple=True)
View medium4.py
estimator = tf.contrib.learn.Estimator(model_fn=model_fn, model_dir=MODEL_DIR, config=tf.contrib.learn.RunConfig())
input_fn_train = udc_inputs.create_input_fn(mode=tf.contrib.learn.ModeKeys.TRAIN, input_files=[TRAIN_FILE], batch_size=hparams.batch_size)
input_fn_eval = udc_inputs.create_input_fn(mode=tf.contrib.learn.ModeKeys.EVAL, input_files=[VALIDATION_FILE], batch_size=hparams.eval_batch_size, num_epochs=1)
eval_metrics = udc_metrics.create_evaluation_metrics()
# We need to subclass theis manually for now. The next TF version will
# have support ValidationMonitors with metrics built-in.
# It’s already on the master branch.
class EvaluationMonitor(tf.contrib.learn.monitors.EveryN):
def every_n_step_end(self, step, outputs):
self._estimator.evaluate(input_fn=input_fn_eval, metrics=eval_metrics, steps=None)
View medium3.py
class TFIDFPredictor:
def __init__(self):
self.vectorizer = TfidfVectorizer()
def train(self, data):
self.vectorizer.fit(np.append(data.Context.values,data.Utterance.values))
def predict(self, context, utterances):
# Convert context and utterances into tfidf vector
vector_context = self.vectorizer.transform([context])
vector_doc = self.vectorizer.transform(utterances)
# The dot product measures the similarity of the resulting vectors
View random_predictor.py
# Random Predictor
def predict_random(context, utterances):
return np.random.choice(len(utterances), 10, replace=False)
# Evaluate Random predictor
y_random = [predict_random(test_df.Context[x], test_df.iloc[x,1:].values) for x in range(len(test_df))]
y_test = np.zeros(len(y_random))
for n in [1, 2, 5, 10]:
print("Recall @ ({}, 10): {:g}".format(n, evaluate_recall(y_random, y_test, n)))
View medium1.py
def evaluate_recall(y, y_test, k=1):
num_examples = float(len(y))
num_correct = 0
for predictions, label in zip(y, y_test):
if label in predictions[:k]:
num_correct += 1
return num_correct/num_examples