Skip to content

Instantly share code, notes, and snippets.

@hrbrmstr
Last active August 29, 2015 14:21
Show Gist options
  • Save hrbrmstr/614c20583126ffe831cf to your computer and use it in GitHub Desktop.
Save hrbrmstr/614c20583126ffe831cf to your computer and use it in GitHub Desktop.
Redo of Figure 1-4 in Akamai's SOTU/S Q1 2015 report
layer Vector 1/1/2014 10/1/2014 1/1/2015
Infrastructure ACK 3.24 2.77 1.99
Infrastructure CHARGEN 3.45 5.2 5.78
Infrastructure DNS 8.95 10.51 5.93
Infrastructure FIN FLOODS 0.86 0.27 0.75
Infrastructure FIN PUSH 0.43 0.13 0.15
Application HEAD 0.43 0.2 0.25
Application HTTP GET 9.28 8.42 7.47
Application HTTP POST 2.37 1.15 0.7
Infrastructure ICMP 9.82 4.18 3.59
Infrastructure NTP 16.61 8.15 6.7
Application PUSH 0.32 0.54 0.9
Infrastructure RESET 1.19 0.94 0.65
Infrastructure RIP 0.22 NA NA
Infrastructure RP 0.32 0.4 0.45
Infrastructure SNMP 0.67 1.15 NA
Infrastructure SSDP NA 14.62 20.87
Infrastructure SYN 17.69 16.91 15.79
Infrastructure SYN PUSH 0.32 0.07 0.35
Infrastructure TCP FRAGMENT 0.11 0.07 0.05
Infrastructure UDP FLOODS 10.36 10.58 13.25
Infrastructure UDP FRAGMENT 13.8 13.95 12
Infrastructure XMAS-DDoS NA 0.27 1.15
library(readr)
library(tidyr)
library(dplyr)
library(ggplot2)
library(scales)
library(gridExtra)
read_csv("ddos-akamai.csv") %>%
gather(quarter, value, -layer, -Vector) %>%
mutate(quarter=as.Date(quarter, format="%m/%d/%Y"),
value=ifelse(is.na(value), 0, value)) %>%
mutate(value=value/100) -> dat
qtr <- data.frame(d=unique(dat$quarter))
dat %>% filter(layer=="Infrastructure") -> infra
infra %>% filter(quarter==qtr$d[3]) %>% arrange(desc(value)) %>% .$Vector -> infra_vec
infra %>% mutate(Vector=factor(Vector, levels=infra_vec, ordered=TRUE)) -> infra
gg <- ggplot(infra, aes(x=quarter, y=value, group=Vector))
gg <- gg + geom_vline(data=qtr, aes(xintercept=as.numeric(d)),
linetype="dashed", color="#7f7f7f", alpha=3/4)
gg <- gg + geom_line(aes(color=Vector), size=1/3, alpha=3/4)
gg <- gg + scale_x_date(expand=c(0, 0), label=date_format("%Y-%b"))
gg <- gg + scale_y_continuous(label=percent)
gg <- gg + scale_color_discrete(name="Infra\nVector")
gg <- gg + labs(x=NULL, y="DDoS Attack Vector Frequency", title="DDoS attack type distribution (Infrastructure)\n")
gg <- gg + theme_bw()
gg <- gg + theme(panel.border=element_blank())
gg <- gg + theme(panel.grid=element_blank())
gg <- gg + theme(axis.ticks.x=element_blank())
gg <- gg + theme(axis.ticks.y=element_blank())
gg <- gg + theme(plot.title=element_text(hjust=0, size=14, face="bold"))
infra_gg <- gg
infra_grob <- ggplotGrob(infra_gg)
dat %>% filter(layer!="Infrastructure") -> app
app %>% filter(quarter==qtr$d[3]) %>% arrange(desc(value)) %>% .$Vector -> app_vec
app %>% mutate(Vector=factor(Vector, levels=app_vec, ordered=TRUE)) -> app
gg <- ggplot(app, aes(x=quarter, y=value, group=Vector))
gg <- gg + geom_vline(data=qtr, aes(xintercept=as.numeric(d)),
linetype="dashed", color="#7f7f7f", alpha=3/4)
gg <- gg + geom_line(aes(color=Vector), size=1/3, alpha=3/4)
gg <- gg + scale_x_date(expand=c(0, 0), label=date_format("%Y-%b"))
gg <- gg + scale_y_continuous(label=percent, breaks=c(0.0, 0.05, 0.10), limits=c(0.0, 0.1))
gg <- gg + scale_color_discrete(name="App\nVector")
gg <- gg + labs(x=NULL, y="DDoS Attack Vector Frequency", title="DDoS attack type distribution (Application)\n")
gg <- gg + theme_bw()
gg <- gg + theme(panel.border=element_blank())
gg <- gg + theme(panel.grid=element_blank())
gg <- gg + theme(axis.ticks.x=element_blank())
gg <- gg + theme(axis.ticks.y=element_blank())
gg <- gg + theme(plot.title=element_text(hjust=0, size=14, face="bold"))
gg <- gg + theme(legend.key=element_rect())
app_gg <- gg
app_grob <- ggplotGrob(app_gg)
app_grob$widths <- infra_grob$widths
grid.arrange(infra_grob, app_grob, ncol=1, heights=c(0.75, 0.25))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment