Last active
October 27, 2017 09:13
-
-
Save htoyryla/fdcab165b397b1b5c4986f4877454d3a to your computer and use it in GitHub Desktop.
Neural-style with additional loss through spatial mean of feature maps
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- neural-style modified by @htoyryla 27 Oct 2017 | |
-- to use both gram matrix (as a statistical evaluation) and a mean of n featuremaps (to retain spatial sturcture of the style image) | |
-- to evaluate style | |
-- StyleLoss and GramMatrix have been copied from fast-neural-style | |
-- but modified to calculate a spatial mean of the feature maps | |
-- new param mean_weight to control the amount of mean for style | |
-- loss_type to select between L2 and SmoothL1 (as in fast-neural-style) | |
-- **** style_scale no longer works, the mean calculation requires that style image is resized as the content image **** | |
require 'torch' | |
require 'nn' | |
require 'image' | |
require 'optim' | |
require 'loadcaffe' | |
local cmd = torch.CmdLine() | |
-- Basic options | |
cmd:option('-style_image', 'examples/inputs/seated-nude.jpg', | |
'Style target image') | |
cmd:option('-style_blend_weights', 'nil') | |
cmd:option('-content_image', 'examples/inputs/tubingen.jpg', | |
'Content target image') | |
cmd:option('-image_size', 512, 'Maximum height / width of generated image') | |
cmd:option('-gpu', '0', 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1') | |
cmd:option('-multigpu_strategy', '', 'Index of layers to split the network across GPUs') | |
-- Optimization options | |
cmd:option('-content_weight', 5e0) | |
cmd:option('-style_weight', 1e2) | |
cmd:option('-mean_weight', 1e2) | |
cmd:option('-tv_weight', 1e-3) | |
cmd:option('-num_iterations', 1000) | |
cmd:option('-normalize_gradients', false) | |
cmd:option('-init', 'random', 'random|image') | |
cmd:option('-loss_type', 'L2', 'L2|SmoothL1') | |
cmd:option('-init_image', '') | |
cmd:option('-optimizer', 'lbfgs', 'lbfgs|adam') | |
cmd:option('-learning_rate', 1e1) | |
cmd:option('-lbfgs_num_correction', 0) | |
-- Output options | |
cmd:option('-print_iter', 50) | |
cmd:option('-save_iter', 100) | |
cmd:option('-output_image', 'out.png') | |
-- Other options | |
cmd:option('-style_scale', 1.0) | |
cmd:option('-original_colors', 0) | |
cmd:option('-pooling', 'max', 'max|avg') | |
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt') | |
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel') | |
cmd:option('-backend', 'nn', 'nn|cudnn|clnn') | |
cmd:option('-cudnn_autotune', false) | |
cmd:option('-seed', -1) | |
cmd:option('-content_layers', 'relu4_2', 'layers for content') | |
cmd:option('-style_layers', 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1', 'layers for style') | |
local function main(params) | |
local dtype, multigpu = setup_gpu(params) | |
local loadcaffe_backend = params.backend | |
if params.backend == 'clnn' then loadcaffe_backend = 'nn' end | |
local cnn = loadcaffe.load(params.proto_file, params.model_file, loadcaffe_backend):type(dtype) | |
local content_image = image.load(params.content_image, 3) | |
content_image = image.scale(content_image, params.image_size, 'bilinear') | |
local content_image_caffe = preprocess(content_image):float() | |
local style_size = math.ceil(params.style_scale * params.image_size) | |
local style_image_list = params.style_image:split(',') | |
local style_images_caffe = {} | |
local init_image = nil | |
local H, W = content_image:size(2), content_image:size(3) | |
if params.init_image ~= '' then | |
init_image = image.load(params.init_image, 3) | |
init_image = image.scale(init_image, W, H, 'bilinear') | |
init_image = preprocess(init_image):float() | |
end | |
for _, img_path in ipairs(style_image_list) do | |
local img = image.load(img_path, 3) | |
img = image.scale(img, W, H, 'bilinear') --make style image have same w and h as content, necessary for the style loss by mean | |
local img_caffe = preprocess(img):float() | |
table.insert(style_images_caffe, img_caffe) | |
end | |
-- Handle style blending weights for multiple style inputs | |
local style_blend_weights = nil | |
if params.style_blend_weights == 'nil' then | |
-- Style blending not specified, so use equal weighting | |
style_blend_weights = {} | |
for i = 1, #style_image_list do | |
table.insert(style_blend_weights, 1.0) | |
end | |
else | |
style_blend_weights = params.style_blend_weights:split(',') | |
assert(#style_blend_weights == #style_image_list, | |
'-style_blend_weights and -style_images must have the same number of elements') | |
end | |
-- Normalize the style blending weights so they sum to 1 | |
local style_blend_sum = 0 | |
for i = 1, #style_blend_weights do | |
style_blend_weights[i] = tonumber(style_blend_weights[i]) | |
style_blend_sum = style_blend_sum + style_blend_weights[i] | |
end | |
for i = 1, #style_blend_weights do | |
style_blend_weights[i] = style_blend_weights[i] / style_blend_sum | |
end | |
local content_layers = params.content_layers:split(",") | |
local style_layers = params.style_layers:split(",") | |
-- Set up the network, inserting style and content loss modules | |
local content_losses, style_losses = {}, {} | |
local next_content_idx, next_style_idx = 1, 1 | |
local net = nn.Sequential() | |
if params.tv_weight > 0 then | |
local tv_mod = nn.TVLoss(params.tv_weight):type(dtype) | |
net:add(tv_mod) | |
end | |
for i = 1, #cnn do | |
if next_content_idx <= #content_layers or next_style_idx <= #style_layers then | |
local layer = cnn:get(i) | |
local name = layer.name | |
local layer_type = torch.type(layer) | |
local is_pooling = (layer_type == 'cudnn.SpatialMaxPooling' or layer_type == 'nn.SpatialMaxPooling') | |
if is_pooling and params.pooling == 'avg' then | |
assert(layer.padW == 0 and layer.padH == 0) | |
local kW, kH = layer.kW, layer.kH | |
local dW, dH = layer.dW, layer.dH | |
local avg_pool_layer = nn.SpatialAveragePooling(kW, kH, dW, dH):type(dtype) | |
local msg = 'Replacing max pooling at layer %d with average pooling' | |
print(string.format(msg, i)) | |
net:add(avg_pool_layer) | |
else | |
net:add(layer) | |
end | |
if name == content_layers[next_content_idx] then | |
print("Setting up content layer", i, ":", layer.name) | |
local norm = params.normalize_gradients | |
local loss_module = nn.ContentLoss(params.content_weight, norm):type(dtype) | |
net:add(loss_module) | |
table.insert(content_losses, loss_module) | |
next_content_idx = next_content_idx + 1 | |
end | |
if name == style_layers[next_style_idx] then | |
print("Setting up style layer ", i, ":", layer.name) | |
local norm = params.normalize_gradients | |
local loss_module = nn.StyleLoss(params.style_weight, "L2", "gram"):type(dtype) | |
net:add(loss_module) | |
table.insert(style_losses, loss_module) | |
local loss_module2 = nn.StyleLoss(params.mean_weight, "L2", "mean"):type(dtype) | |
net:add(loss_module2) | |
table.insert(style_losses, loss_module2) | |
next_style_idx = next_style_idx + 1 | |
end | |
end | |
end | |
if multigpu then | |
net = setup_multi_gpu(net, params) | |
end | |
net:type(dtype) | |
-- Capture content targets | |
for i = 1, #content_losses do | |
content_losses[i].mode = 'capture' | |
end | |
print 'Capturing content targets' | |
print(net) | |
content_image_caffe = content_image_caffe:type(dtype) | |
net:forward(content_image_caffe:type(dtype)) | |
-- Capture style targets | |
for i = 1, #content_losses do | |
content_losses[i].mode = 'none' | |
end | |
for i = 1, #style_images_caffe do | |
print(string.format('Capturing style target %d', i)) | |
for j = 1, #style_losses do | |
style_losses[j].mode = 'capture' | |
style_losses[j].blend_weight = style_blend_weights[i] | |
end | |
net:forward(style_images_caffe[i]:type(dtype)) | |
end | |
-- Set all loss modules to loss mode | |
for i = 1, #content_losses do | |
content_losses[i].mode = 'loss' | |
end | |
for i = 1, #style_losses do | |
style_losses[i].mode = 'loss' | |
end | |
-- We don't need the base CNN anymore, so clean it up to save memory. | |
cnn = nil | |
for i=1, #net.modules do | |
local module = net.modules[i] | |
if torch.type(module) == 'nn.SpatialConvolutionMM' then | |
-- remove these, not used, but uses gpu memory | |
module.gradWeight = nil | |
module.gradBias = nil | |
end | |
end | |
collectgarbage() | |
-- Initialize the image | |
if params.seed >= 0 then | |
torch.manualSeed(params.seed) | |
end | |
local img = nil | |
if params.init == 'random' then | |
img = torch.randn(content_image:size()):float():mul(0.001) | |
elseif params.init == 'image' then | |
if init_image then | |
img = init_image:clone() | |
else | |
img = content_image_caffe:clone() | |
end | |
else | |
error('Invalid init type') | |
end | |
img = img:type(dtype) | |
-- Run it through the network once to get the proper size for the gradient | |
-- All the gradients will come from the extra loss modules, so we just pass | |
-- zeros into the top of the net on the backward pass. | |
local y = net:forward(img) | |
local dy = img.new(#y):zero() | |
-- Declaring this here lets us access it in maybe_print | |
local optim_state = nil | |
if params.optimizer == 'lbfgs' then | |
optim_state = { | |
maxIter = params.num_iterations, | |
verbose=true, | |
tolX=-1, | |
tolFun=-1, | |
} | |
if params.lbfgs_num_correction > 0 then | |
optim_state.nCorrection = params.lbfgs_num_correction | |
end | |
elseif params.optimizer == 'adam' then | |
optim_state = { | |
learningRate = params.learning_rate, | |
} | |
else | |
error(string.format('Unrecognized optimizer "%s"', params.optimizer)) | |
end | |
local function maybe_print(t, loss) | |
local verbose = (params.print_iter > 0 and t % params.print_iter == 0) | |
if verbose then | |
print(string.format('Iteration %d / %d', t, params.num_iterations)) | |
for i, loss_module in ipairs(content_losses) do | |
print(string.format(' Content %d loss: %f', i, loss_module.loss)) | |
end | |
for i, loss_module in ipairs(style_losses) do | |
print(string.format(' Style %d loss: %f', i, loss_module.loss)) | |
end | |
print(string.format(' Total loss: %f', loss)) | |
end | |
end | |
local function maybe_save(t) | |
local should_save = params.save_iter > 0 and t % params.save_iter == 0 | |
should_save = should_save or t == params.num_iterations | |
if should_save then | |
local disp = deprocess(img:double()) | |
disp = image.minmax{tensor=disp, min=0, max=1} | |
local filename = build_filename(params.output_image, t) | |
if t == params.num_iterations then | |
filename = params.output_image | |
end | |
-- Maybe perform postprocessing for color-independent style transfer | |
if params.original_colors == 1 then | |
disp = original_colors(content_image, disp) | |
end | |
image.save(filename, disp) | |
end | |
end | |
-- Function to evaluate loss and gradient. We run the net forward and | |
-- backward to get the gradient, and sum up losses from the loss modules. | |
-- optim.lbfgs internally handles iteration and calls this function many | |
-- times, so we manually count the number of iterations to handle printing | |
-- and saving intermediate results. | |
local num_calls = 0 | |
local function feval(x) | |
num_calls = num_calls + 1 | |
net:forward(x) | |
local grad = net:updateGradInput(x, dy) | |
local loss = 0 | |
for _, mod in ipairs(content_losses) do | |
loss = loss + mod.loss | |
end | |
for _, mod in ipairs(style_losses) do | |
loss = loss + mod.loss | |
end | |
maybe_print(num_calls, loss) | |
maybe_save(num_calls) | |
collectgarbage() | |
-- optim.lbfgs expects a vector for gradients | |
return loss, grad:view(grad:nElement()) | |
end | |
-- Run optimization. | |
if params.optimizer == 'lbfgs' then | |
print('Running optimization with L-BFGS') | |
local x, losses = optim.lbfgs(feval, img, optim_state) | |
elseif params.optimizer == 'adam' then | |
print('Running optimization with ADAM') | |
for t = 1, params.num_iterations do | |
local x, losses = optim.adam(feval, img, optim_state) | |
end | |
end | |
end | |
function setup_gpu(params) | |
local multigpu = false | |
if params.gpu:find(',') then | |
multigpu = true | |
params.gpu = params.gpu:split(',') | |
for i = 1, #params.gpu do | |
params.gpu[i] = tonumber(params.gpu[i]) + 1 | |
end | |
else | |
params.gpu = tonumber(params.gpu) + 1 | |
end | |
local dtype = 'torch.FloatTensor' | |
if multigpu or params.gpu > 0 then | |
if params.backend ~= 'clnn' then | |
require 'cutorch' | |
require 'cunn' | |
if multigpu then | |
cutorch.setDevice(params.gpu[1]) | |
else | |
cutorch.setDevice(params.gpu) | |
end | |
dtype = 'torch.CudaTensor' | |
else | |
require 'clnn' | |
require 'cltorch' | |
if multigpu then | |
cltorch.setDevice(params.gpu[1]) | |
else | |
cltorch.setDevice(params.gpu) | |
end | |
dtype = torch.Tensor():cl():type() | |
end | |
else | |
params.backend = 'nn' | |
end | |
if params.backend == 'cudnn' then | |
require 'cudnn' | |
if params.cudnn_autotune then | |
cudnn.benchmark = true | |
end | |
cudnn.SpatialConvolution.accGradParameters = nn.SpatialConvolutionMM.accGradParameters -- ie: nop | |
end | |
return dtype, multigpu | |
end | |
function setup_multi_gpu(net, params) | |
local DEFAULT_STRATEGIES = { | |
[2] = {3}, | |
} | |
local gpu_splits = nil | |
if params.multigpu_strategy == '' then | |
-- Use a default strategy | |
gpu_splits = DEFAULT_STRATEGIES[#params.gpu] | |
-- Offset the default strategy by one if we are using TV | |
if params.tv_weight > 0 then | |
for i = 1, #gpu_splits do gpu_splits[i] = gpu_splits[i] + 1 end | |
end | |
else | |
-- Use the user-specified multigpu strategy | |
gpu_splits = params.multigpu_strategy:split(',') | |
for i = 1, #gpu_splits do | |
gpu_splits[i] = tonumber(gpu_splits[i]) | |
end | |
end | |
assert(gpu_splits ~= nil, 'Must specify -multigpu_strategy') | |
local gpus = params.gpu | |
local cur_chunk = nn.Sequential() | |
local chunks = {} | |
for i = 1, #net do | |
cur_chunk:add(net:get(i)) | |
if i == gpu_splits[1] then | |
table.remove(gpu_splits, 1) | |
table.insert(chunks, cur_chunk) | |
cur_chunk = nn.Sequential() | |
end | |
end | |
table.insert(chunks, cur_chunk) | |
assert(#chunks == #gpus) | |
local new_net = nn.Sequential() | |
for i = 1, #chunks do | |
local out_device = nil | |
if i == #chunks then | |
out_device = gpus[1] | |
end | |
new_net:add(nn.GPU(chunks[i], gpus[i], out_device)) | |
end | |
return new_net | |
end | |
function build_filename(output_image, iteration) | |
local ext = paths.extname(output_image) | |
local basename = paths.basename(output_image, ext) | |
local directory = paths.dirname(output_image) | |
return string.format('%s/%s_%d.%s',directory, basename, iteration, ext) | |
end | |
-- Preprocess an image before passing it to a Caffe model. | |
-- We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR, | |
-- and subtract the mean pixel. | |
function preprocess(img) | |
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68}) | |
local perm = torch.LongTensor{3, 2, 1} | |
img = img:index(1, perm):mul(256.0) | |
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img) | |
img:add(-1, mean_pixel) | |
return img | |
end | |
-- Undo the above preprocessing. | |
function deprocess(img) | |
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68}) | |
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img) | |
img = img + mean_pixel | |
local perm = torch.LongTensor{3, 2, 1} | |
img = img:index(1, perm):div(256.0) | |
return img | |
end | |
-- Combine the Y channel of the generated image and the UV channels of the | |
-- content image to perform color-independent style transfer. | |
function original_colors(content, generated) | |
local generated_y = image.rgb2yuv(generated)[{{1, 1}}] | |
local content_uv = image.rgb2yuv(content)[{{2, 3}}] | |
return image.yuv2rgb(torch.cat(generated_y, content_uv, 1)) | |
end | |
-- Define an nn Module to compute content loss in-place | |
local ContentLoss, parent = torch.class('nn.ContentLoss', 'nn.Module') | |
function ContentLoss:__init(strength, normalize) | |
parent.__init(self) | |
self.strength = strength | |
self.target = torch.Tensor() | |
self.normalize = normalize or false | |
self.loss = 0 | |
self.crit = nn.MSECriterion() | |
self.mode = 'none' | |
end | |
function ContentLoss:updateOutput(input) | |
if self.mode == 'loss' then | |
self.loss = self.crit:forward(input, self.target) * self.strength | |
elseif self.mode == 'capture' then | |
self.target:resizeAs(input):copy(input) | |
end | |
self.output = input | |
return self.output | |
end | |
function ContentLoss:updateGradInput(input, gradOutput) | |
if self.mode == 'loss' then | |
if input:nElement() == self.target:nElement() then | |
self.gradInput = self.crit:backward(input, self.target) | |
end | |
if self.normalize then | |
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8) | |
end | |
self.gradInput:mul(self.strength) | |
self.gradInput:add(gradOutput) | |
else | |
self.gradInput:resizeAs(gradOutput):copy(gradOutput) | |
end | |
return self.gradInput | |
end | |
local StyleLoss, parent = torch.class('nn.StyleLoss', 'nn.Module') | |
function StyleLoss:__init(strength, loss_type, agg_type) | |
parent.__init(self) | |
self.agg_type = agg_type or 'gram' | |
self.strength = strength or 1.0 | |
self.loss = 0 | |
self.target = torch.Tensor() | |
if self.agg_type == 'gram' then | |
self.agg = nn.GramMatrix() | |
elseif self.agg_type == 'mean' then | |
self.agg = nn.Sequential() | |
self.agg:add(nn.Mean(1)) | |
--self.agg:add(nn.Mean(3)) | |
else | |
error('Unsupported aggregation type ' .. agg_type) | |
end | |
self.agg_out = nil | |
self.mode = 'none' | |
loss_type = loss_type or 'L2' | |
if loss_type == 'L2' then | |
self.crit = nn.MSECriterion() | |
elseif loss_type == 'SmoothL1' then | |
self.crit = nn.SmoothL1Criterion() | |
else | |
error(string.format('invalid loss type "%s"', loss_type)) | |
end | |
end | |
function StyleLoss:updateOutput(input) | |
--print("input",input:size()) | |
self.agg_out = self.agg:forward(input) | |
--print("agg_out", self.agg_out:size()) | |
if self.mode == 'capture' then | |
self.target:resizeAs(self.agg_out):copy(self.agg_out) | |
--print("capture", self.target:size()) | |
elseif self.mode == 'loss' then | |
local target = self.target | |
--print("target", target:size()) | |
--if self.agg_out:size(1) > 1 and self.target:size(1) == 1 then | |
-- Handle minibatch inputs | |
--target = target:expandAs(self.agg_out) | |
--end | |
self.loss = self.strength * self.crit(self.agg_out, target) | |
self._target = target | |
end | |
self.output = input | |
return self.output | |
end | |
function StyleLoss:updateGradInput(input, gradOutput) | |
if self.mode == 'capture' or self.mode == 'none' then | |
self.gradInput = gradOutput | |
elseif self.mode == 'loss' then | |
self.crit:backward(self.agg_out, self._target) | |
self.crit.gradInput:mul(self.strength) | |
self.agg:backward(input, self.crit.gradInput) | |
self.gradInput:add(self.agg.gradInput, gradOutput) | |
end | |
return self.gradInput | |
end | |
function StyleLoss:setMode(mode) | |
if mode ~= 'capture' and mode ~= 'loss' and mode ~= 'none' then | |
error(string.format('Invalid mode "%s"', mode)) | |
end | |
self.mode = mode | |
end | |
local Gram, parent = torch.class('nn.GramMatrix', 'nn.Module') | |
--[[ | |
A layer to compute the Gram Matrix of inputs. | |
Input: | |
- features: A tensor of shape (N, C, H, W) or (C, H, W) giving features for | |
either a single image or a minibatch of images. | |
Output: | |
- gram: A tensor of shape (N, C, C) or (C, C) giving Gram matrix for input. | |
--]] | |
function Gram:__init(normalize) | |
parent.__init(self) | |
if normalize ~= nil then | |
assert(type(normalize) == 'boolean', 'normalize has to be true/false') | |
self.normalize = normalize | |
else | |
self.normalize = true | |
end | |
self.buffer = torch.Tensor() | |
end | |
function Gram:updateOutput(input) | |
local C, H, W | |
if input:dim() == 3 then | |
C, H, W = input:size(1), input:size(2), input:size(3) | |
local x_flat = input:view(C, H * W) | |
self.output:resize(C, C) | |
self.output:mm(x_flat, x_flat:t()) | |
elseif input:dim() == 4 then | |
local N = input:size(1) | |
C, H, W = input:size(2), input:size(3), input:size(4) | |
self.output:resize(N, C, C) | |
local x_flat = input:view(N, C, H * W) | |
self.output:resize(N, C, C) | |
self.output:bmm(x_flat, x_flat:transpose(2, 3)) | |
end | |
if self.normalize then | |
-- print('in gram forward; dividing by ', C * H * W) | |
self.output:div(C * H * W) | |
end | |
return self.output | |
end | |
function Gram:updateGradInput(input, gradOutput) | |
self.gradInput:resizeAs(input):zero() | |
local C, H, W | |
if input:dim() == 3 then | |
C, H, W = input:size(1), input:size(2), input:size(3) | |
local x_flat = input:view(C, H * W) | |
self.buffer:resize(C, H * W) | |
self.buffer:mm(gradOutput, x_flat) | |
self.buffer:addmm(gradOutput:t(), x_flat) | |
self.gradInput = self.buffer:view(C, H, W) | |
elseif input:dim() == 4 then | |
local N = input:size(1) | |
C, H, W = input:size(2), input:size(3), input:size(4) | |
local x_flat = input:view(N, C, H * W) | |
self.buffer:resize(N, C, H * W) | |
self.buffer:bmm(gradOutput, x_flat) | |
self.buffer:baddbmm(gradOutput:transpose(2, 3), x_flat) | |
self.gradInput = self.buffer:view(N, C, H, W) | |
end | |
if self.normalize then | |
self.buffer:div(C * H * W) | |
end | |
assert(self.gradInput:isContiguous()) | |
return self.gradInput | |
end | |
local TVLoss, parent = torch.class('nn.TVLoss', 'nn.Module') | |
function TVLoss:__init(strength) | |
parent.__init(self) | |
self.strength = strength | |
self.x_diff = torch.Tensor() | |
self.y_diff = torch.Tensor() | |
end | |
function TVLoss:updateOutput(input) | |
self.output = input | |
return self.output | |
end | |
-- TV loss backward pass inspired by kaishengtai/neuralart | |
function TVLoss:updateGradInput(input, gradOutput) | |
self.gradInput:resizeAs(input):zero() | |
local C, H, W = input:size(1), input:size(2), input:size(3) | |
self.x_diff:resize(3, H - 1, W - 1) | |
self.y_diff:resize(3, H - 1, W - 1) | |
self.x_diff:copy(input[{{}, {1, -2}, {1, -2}}]) | |
self.x_diff:add(-1, input[{{}, {1, -2}, {2, -1}}]) | |
self.y_diff:copy(input[{{}, {1, -2}, {1, -2}}]) | |
self.y_diff:add(-1, input[{{}, {2, -1}, {1, -2}}]) | |
self.gradInput[{{}, {1, -2}, {1, -2}}]:add(self.x_diff):add(self.y_diff) | |
self.gradInput[{{}, {1, -2}, {2, -1}}]:add(-1, self.x_diff) | |
self.gradInput[{{}, {2, -1}, {1, -2}}]:add(-1, self.y_diff) | |
self.gradInput:mul(self.strength) | |
self.gradInput:add(gradOutput) | |
return self.gradInput | |
end | |
local params = cmd:parse(arg) | |
main(params) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment