Skip to content

Instantly share code, notes, and snippets.

@htoyryla
Last active October 27, 2017 09:13
Show Gist options
  • Save htoyryla/fdcab165b397b1b5c4986f4877454d3a to your computer and use it in GitHub Desktop.
Save htoyryla/fdcab165b397b1b5c4986f4877454d3a to your computer and use it in GitHub Desktop.
Neural-style with additional loss through spatial mean of feature maps
-- neural-style modified by @htoyryla 27 Oct 2017
-- to use both gram matrix (as a statistical evaluation) and a mean of n featuremaps (to retain spatial sturcture of the style image)
-- to evaluate style
-- StyleLoss and GramMatrix have been copied from fast-neural-style
-- but modified to calculate a spatial mean of the feature maps
-- new param mean_weight to control the amount of mean for style
-- loss_type to select between L2 and SmoothL1 (as in fast-neural-style)
-- **** style_scale no longer works, the mean calculation requires that style image is resized as the content image ****
require 'torch'
require 'nn'
require 'image'
require 'optim'
require 'loadcaffe'
local cmd = torch.CmdLine()
-- Basic options
cmd:option('-style_image', 'examples/inputs/seated-nude.jpg',
'Style target image')
cmd:option('-style_blend_weights', 'nil')
cmd:option('-content_image', 'examples/inputs/tubingen.jpg',
'Content target image')
cmd:option('-image_size', 512, 'Maximum height / width of generated image')
cmd:option('-gpu', '0', 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1')
cmd:option('-multigpu_strategy', '', 'Index of layers to split the network across GPUs')
-- Optimization options
cmd:option('-content_weight', 5e0)
cmd:option('-style_weight', 1e2)
cmd:option('-mean_weight', 1e2)
cmd:option('-tv_weight', 1e-3)
cmd:option('-num_iterations', 1000)
cmd:option('-normalize_gradients', false)
cmd:option('-init', 'random', 'random|image')
cmd:option('-loss_type', 'L2', 'L2|SmoothL1')
cmd:option('-init_image', '')
cmd:option('-optimizer', 'lbfgs', 'lbfgs|adam')
cmd:option('-learning_rate', 1e1)
cmd:option('-lbfgs_num_correction', 0)
-- Output options
cmd:option('-print_iter', 50)
cmd:option('-save_iter', 100)
cmd:option('-output_image', 'out.png')
-- Other options
cmd:option('-style_scale', 1.0)
cmd:option('-original_colors', 0)
cmd:option('-pooling', 'max', 'max|avg')
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt')
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel')
cmd:option('-backend', 'nn', 'nn|cudnn|clnn')
cmd:option('-cudnn_autotune', false)
cmd:option('-seed', -1)
cmd:option('-content_layers', 'relu4_2', 'layers for content')
cmd:option('-style_layers', 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1', 'layers for style')
local function main(params)
local dtype, multigpu = setup_gpu(params)
local loadcaffe_backend = params.backend
if params.backend == 'clnn' then loadcaffe_backend = 'nn' end
local cnn = loadcaffe.load(params.proto_file, params.model_file, loadcaffe_backend):type(dtype)
local content_image = image.load(params.content_image, 3)
content_image = image.scale(content_image, params.image_size, 'bilinear')
local content_image_caffe = preprocess(content_image):float()
local style_size = math.ceil(params.style_scale * params.image_size)
local style_image_list = params.style_image:split(',')
local style_images_caffe = {}
local init_image = nil
local H, W = content_image:size(2), content_image:size(3)
if params.init_image ~= '' then
init_image = image.load(params.init_image, 3)
init_image = image.scale(init_image, W, H, 'bilinear')
init_image = preprocess(init_image):float()
end
for _, img_path in ipairs(style_image_list) do
local img = image.load(img_path, 3)
img = image.scale(img, W, H, 'bilinear') --make style image have same w and h as content, necessary for the style loss by mean
local img_caffe = preprocess(img):float()
table.insert(style_images_caffe, img_caffe)
end
-- Handle style blending weights for multiple style inputs
local style_blend_weights = nil
if params.style_blend_weights == 'nil' then
-- Style blending not specified, so use equal weighting
style_blend_weights = {}
for i = 1, #style_image_list do
table.insert(style_blend_weights, 1.0)
end
else
style_blend_weights = params.style_blend_weights:split(',')
assert(#style_blend_weights == #style_image_list,
'-style_blend_weights and -style_images must have the same number of elements')
end
-- Normalize the style blending weights so they sum to 1
local style_blend_sum = 0
for i = 1, #style_blend_weights do
style_blend_weights[i] = tonumber(style_blend_weights[i])
style_blend_sum = style_blend_sum + style_blend_weights[i]
end
for i = 1, #style_blend_weights do
style_blend_weights[i] = style_blend_weights[i] / style_blend_sum
end
local content_layers = params.content_layers:split(",")
local style_layers = params.style_layers:split(",")
-- Set up the network, inserting style and content loss modules
local content_losses, style_losses = {}, {}
local next_content_idx, next_style_idx = 1, 1
local net = nn.Sequential()
if params.tv_weight > 0 then
local tv_mod = nn.TVLoss(params.tv_weight):type(dtype)
net:add(tv_mod)
end
for i = 1, #cnn do
if next_content_idx <= #content_layers or next_style_idx <= #style_layers then
local layer = cnn:get(i)
local name = layer.name
local layer_type = torch.type(layer)
local is_pooling = (layer_type == 'cudnn.SpatialMaxPooling' or layer_type == 'nn.SpatialMaxPooling')
if is_pooling and params.pooling == 'avg' then
assert(layer.padW == 0 and layer.padH == 0)
local kW, kH = layer.kW, layer.kH
local dW, dH = layer.dW, layer.dH
local avg_pool_layer = nn.SpatialAveragePooling(kW, kH, dW, dH):type(dtype)
local msg = 'Replacing max pooling at layer %d with average pooling'
print(string.format(msg, i))
net:add(avg_pool_layer)
else
net:add(layer)
end
if name == content_layers[next_content_idx] then
print("Setting up content layer", i, ":", layer.name)
local norm = params.normalize_gradients
local loss_module = nn.ContentLoss(params.content_weight, norm):type(dtype)
net:add(loss_module)
table.insert(content_losses, loss_module)
next_content_idx = next_content_idx + 1
end
if name == style_layers[next_style_idx] then
print("Setting up style layer ", i, ":", layer.name)
local norm = params.normalize_gradients
local loss_module = nn.StyleLoss(params.style_weight, "L2", "gram"):type(dtype)
net:add(loss_module)
table.insert(style_losses, loss_module)
local loss_module2 = nn.StyleLoss(params.mean_weight, "L2", "mean"):type(dtype)
net:add(loss_module2)
table.insert(style_losses, loss_module2)
next_style_idx = next_style_idx + 1
end
end
end
if multigpu then
net = setup_multi_gpu(net, params)
end
net:type(dtype)
-- Capture content targets
for i = 1, #content_losses do
content_losses[i].mode = 'capture'
end
print 'Capturing content targets'
print(net)
content_image_caffe = content_image_caffe:type(dtype)
net:forward(content_image_caffe:type(dtype))
-- Capture style targets
for i = 1, #content_losses do
content_losses[i].mode = 'none'
end
for i = 1, #style_images_caffe do
print(string.format('Capturing style target %d', i))
for j = 1, #style_losses do
style_losses[j].mode = 'capture'
style_losses[j].blend_weight = style_blend_weights[i]
end
net:forward(style_images_caffe[i]:type(dtype))
end
-- Set all loss modules to loss mode
for i = 1, #content_losses do
content_losses[i].mode = 'loss'
end
for i = 1, #style_losses do
style_losses[i].mode = 'loss'
end
-- We don't need the base CNN anymore, so clean it up to save memory.
cnn = nil
for i=1, #net.modules do
local module = net.modules[i]
if torch.type(module) == 'nn.SpatialConvolutionMM' then
-- remove these, not used, but uses gpu memory
module.gradWeight = nil
module.gradBias = nil
end
end
collectgarbage()
-- Initialize the image
if params.seed >= 0 then
torch.manualSeed(params.seed)
end
local img = nil
if params.init == 'random' then
img = torch.randn(content_image:size()):float():mul(0.001)
elseif params.init == 'image' then
if init_image then
img = init_image:clone()
else
img = content_image_caffe:clone()
end
else
error('Invalid init type')
end
img = img:type(dtype)
-- Run it through the network once to get the proper size for the gradient
-- All the gradients will come from the extra loss modules, so we just pass
-- zeros into the top of the net on the backward pass.
local y = net:forward(img)
local dy = img.new(#y):zero()
-- Declaring this here lets us access it in maybe_print
local optim_state = nil
if params.optimizer == 'lbfgs' then
optim_state = {
maxIter = params.num_iterations,
verbose=true,
tolX=-1,
tolFun=-1,
}
if params.lbfgs_num_correction > 0 then
optim_state.nCorrection = params.lbfgs_num_correction
end
elseif params.optimizer == 'adam' then
optim_state = {
learningRate = params.learning_rate,
}
else
error(string.format('Unrecognized optimizer "%s"', params.optimizer))
end
local function maybe_print(t, loss)
local verbose = (params.print_iter > 0 and t % params.print_iter == 0)
if verbose then
print(string.format('Iteration %d / %d', t, params.num_iterations))
for i, loss_module in ipairs(content_losses) do
print(string.format(' Content %d loss: %f', i, loss_module.loss))
end
for i, loss_module in ipairs(style_losses) do
print(string.format(' Style %d loss: %f', i, loss_module.loss))
end
print(string.format(' Total loss: %f', loss))
end
end
local function maybe_save(t)
local should_save = params.save_iter > 0 and t % params.save_iter == 0
should_save = should_save or t == params.num_iterations
if should_save then
local disp = deprocess(img:double())
disp = image.minmax{tensor=disp, min=0, max=1}
local filename = build_filename(params.output_image, t)
if t == params.num_iterations then
filename = params.output_image
end
-- Maybe perform postprocessing for color-independent style transfer
if params.original_colors == 1 then
disp = original_colors(content_image, disp)
end
image.save(filename, disp)
end
end
-- Function to evaluate loss and gradient. We run the net forward and
-- backward to get the gradient, and sum up losses from the loss modules.
-- optim.lbfgs internally handles iteration and calls this function many
-- times, so we manually count the number of iterations to handle printing
-- and saving intermediate results.
local num_calls = 0
local function feval(x)
num_calls = num_calls + 1
net:forward(x)
local grad = net:updateGradInput(x, dy)
local loss = 0
for _, mod in ipairs(content_losses) do
loss = loss + mod.loss
end
for _, mod in ipairs(style_losses) do
loss = loss + mod.loss
end
maybe_print(num_calls, loss)
maybe_save(num_calls)
collectgarbage()
-- optim.lbfgs expects a vector for gradients
return loss, grad:view(grad:nElement())
end
-- Run optimization.
if params.optimizer == 'lbfgs' then
print('Running optimization with L-BFGS')
local x, losses = optim.lbfgs(feval, img, optim_state)
elseif params.optimizer == 'adam' then
print('Running optimization with ADAM')
for t = 1, params.num_iterations do
local x, losses = optim.adam(feval, img, optim_state)
end
end
end
function setup_gpu(params)
local multigpu = false
if params.gpu:find(',') then
multigpu = true
params.gpu = params.gpu:split(',')
for i = 1, #params.gpu do
params.gpu[i] = tonumber(params.gpu[i]) + 1
end
else
params.gpu = tonumber(params.gpu) + 1
end
local dtype = 'torch.FloatTensor'
if multigpu or params.gpu > 0 then
if params.backend ~= 'clnn' then
require 'cutorch'
require 'cunn'
if multigpu then
cutorch.setDevice(params.gpu[1])
else
cutorch.setDevice(params.gpu)
end
dtype = 'torch.CudaTensor'
else
require 'clnn'
require 'cltorch'
if multigpu then
cltorch.setDevice(params.gpu[1])
else
cltorch.setDevice(params.gpu)
end
dtype = torch.Tensor():cl():type()
end
else
params.backend = 'nn'
end
if params.backend == 'cudnn' then
require 'cudnn'
if params.cudnn_autotune then
cudnn.benchmark = true
end
cudnn.SpatialConvolution.accGradParameters = nn.SpatialConvolutionMM.accGradParameters -- ie: nop
end
return dtype, multigpu
end
function setup_multi_gpu(net, params)
local DEFAULT_STRATEGIES = {
[2] = {3},
}
local gpu_splits = nil
if params.multigpu_strategy == '' then
-- Use a default strategy
gpu_splits = DEFAULT_STRATEGIES[#params.gpu]
-- Offset the default strategy by one if we are using TV
if params.tv_weight > 0 then
for i = 1, #gpu_splits do gpu_splits[i] = gpu_splits[i] + 1 end
end
else
-- Use the user-specified multigpu strategy
gpu_splits = params.multigpu_strategy:split(',')
for i = 1, #gpu_splits do
gpu_splits[i] = tonumber(gpu_splits[i])
end
end
assert(gpu_splits ~= nil, 'Must specify -multigpu_strategy')
local gpus = params.gpu
local cur_chunk = nn.Sequential()
local chunks = {}
for i = 1, #net do
cur_chunk:add(net:get(i))
if i == gpu_splits[1] then
table.remove(gpu_splits, 1)
table.insert(chunks, cur_chunk)
cur_chunk = nn.Sequential()
end
end
table.insert(chunks, cur_chunk)
assert(#chunks == #gpus)
local new_net = nn.Sequential()
for i = 1, #chunks do
local out_device = nil
if i == #chunks then
out_device = gpus[1]
end
new_net:add(nn.GPU(chunks[i], gpus[i], out_device))
end
return new_net
end
function build_filename(output_image, iteration)
local ext = paths.extname(output_image)
local basename = paths.basename(output_image, ext)
local directory = paths.dirname(output_image)
return string.format('%s/%s_%d.%s',directory, basename, iteration, ext)
end
-- Preprocess an image before passing it to a Caffe model.
-- We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR,
-- and subtract the mean pixel.
function preprocess(img)
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68})
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm):mul(256.0)
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img)
img:add(-1, mean_pixel)
return img
end
-- Undo the above preprocessing.
function deprocess(img)
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68})
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img)
img = img + mean_pixel
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm):div(256.0)
return img
end
-- Combine the Y channel of the generated image and the UV channels of the
-- content image to perform color-independent style transfer.
function original_colors(content, generated)
local generated_y = image.rgb2yuv(generated)[{{1, 1}}]
local content_uv = image.rgb2yuv(content)[{{2, 3}}]
return image.yuv2rgb(torch.cat(generated_y, content_uv, 1))
end
-- Define an nn Module to compute content loss in-place
local ContentLoss, parent = torch.class('nn.ContentLoss', 'nn.Module')
function ContentLoss:__init(strength, normalize)
parent.__init(self)
self.strength = strength
self.target = torch.Tensor()
self.normalize = normalize or false
self.loss = 0
self.crit = nn.MSECriterion()
self.mode = 'none'
end
function ContentLoss:updateOutput(input)
if self.mode == 'loss' then
self.loss = self.crit:forward(input, self.target) * self.strength
elseif self.mode == 'capture' then
self.target:resizeAs(input):copy(input)
end
self.output = input
return self.output
end
function ContentLoss:updateGradInput(input, gradOutput)
if self.mode == 'loss' then
if input:nElement() == self.target:nElement() then
self.gradInput = self.crit:backward(input, self.target)
end
if self.normalize then
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8)
end
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
else
self.gradInput:resizeAs(gradOutput):copy(gradOutput)
end
return self.gradInput
end
local StyleLoss, parent = torch.class('nn.StyleLoss', 'nn.Module')
function StyleLoss:__init(strength, loss_type, agg_type)
parent.__init(self)
self.agg_type = agg_type or 'gram'
self.strength = strength or 1.0
self.loss = 0
self.target = torch.Tensor()
if self.agg_type == 'gram' then
self.agg = nn.GramMatrix()
elseif self.agg_type == 'mean' then
self.agg = nn.Sequential()
self.agg:add(nn.Mean(1))
--self.agg:add(nn.Mean(3))
else
error('Unsupported aggregation type ' .. agg_type)
end
self.agg_out = nil
self.mode = 'none'
loss_type = loss_type or 'L2'
if loss_type == 'L2' then
self.crit = nn.MSECriterion()
elseif loss_type == 'SmoothL1' then
self.crit = nn.SmoothL1Criterion()
else
error(string.format('invalid loss type "%s"', loss_type))
end
end
function StyleLoss:updateOutput(input)
--print("input",input:size())
self.agg_out = self.agg:forward(input)
--print("agg_out", self.agg_out:size())
if self.mode == 'capture' then
self.target:resizeAs(self.agg_out):copy(self.agg_out)
--print("capture", self.target:size())
elseif self.mode == 'loss' then
local target = self.target
--print("target", target:size())
--if self.agg_out:size(1) > 1 and self.target:size(1) == 1 then
-- Handle minibatch inputs
--target = target:expandAs(self.agg_out)
--end
self.loss = self.strength * self.crit(self.agg_out, target)
self._target = target
end
self.output = input
return self.output
end
function StyleLoss:updateGradInput(input, gradOutput)
if self.mode == 'capture' or self.mode == 'none' then
self.gradInput = gradOutput
elseif self.mode == 'loss' then
self.crit:backward(self.agg_out, self._target)
self.crit.gradInput:mul(self.strength)
self.agg:backward(input, self.crit.gradInput)
self.gradInput:add(self.agg.gradInput, gradOutput)
end
return self.gradInput
end
function StyleLoss:setMode(mode)
if mode ~= 'capture' and mode ~= 'loss' and mode ~= 'none' then
error(string.format('Invalid mode "%s"', mode))
end
self.mode = mode
end
local Gram, parent = torch.class('nn.GramMatrix', 'nn.Module')
--[[
A layer to compute the Gram Matrix of inputs.
Input:
- features: A tensor of shape (N, C, H, W) or (C, H, W) giving features for
either a single image or a minibatch of images.
Output:
- gram: A tensor of shape (N, C, C) or (C, C) giving Gram matrix for input.
--]]
function Gram:__init(normalize)
parent.__init(self)
if normalize ~= nil then
assert(type(normalize) == 'boolean', 'normalize has to be true/false')
self.normalize = normalize
else
self.normalize = true
end
self.buffer = torch.Tensor()
end
function Gram:updateOutput(input)
local C, H, W
if input:dim() == 3 then
C, H, W = input:size(1), input:size(2), input:size(3)
local x_flat = input:view(C, H * W)
self.output:resize(C, C)
self.output:mm(x_flat, x_flat:t())
elseif input:dim() == 4 then
local N = input:size(1)
C, H, W = input:size(2), input:size(3), input:size(4)
self.output:resize(N, C, C)
local x_flat = input:view(N, C, H * W)
self.output:resize(N, C, C)
self.output:bmm(x_flat, x_flat:transpose(2, 3))
end
if self.normalize then
-- print('in gram forward; dividing by ', C * H * W)
self.output:div(C * H * W)
end
return self.output
end
function Gram:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input):zero()
local C, H, W
if input:dim() == 3 then
C, H, W = input:size(1), input:size(2), input:size(3)
local x_flat = input:view(C, H * W)
self.buffer:resize(C, H * W)
self.buffer:mm(gradOutput, x_flat)
self.buffer:addmm(gradOutput:t(), x_flat)
self.gradInput = self.buffer:view(C, H, W)
elseif input:dim() == 4 then
local N = input:size(1)
C, H, W = input:size(2), input:size(3), input:size(4)
local x_flat = input:view(N, C, H * W)
self.buffer:resize(N, C, H * W)
self.buffer:bmm(gradOutput, x_flat)
self.buffer:baddbmm(gradOutput:transpose(2, 3), x_flat)
self.gradInput = self.buffer:view(N, C, H, W)
end
if self.normalize then
self.buffer:div(C * H * W)
end
assert(self.gradInput:isContiguous())
return self.gradInput
end
local TVLoss, parent = torch.class('nn.TVLoss', 'nn.Module')
function TVLoss:__init(strength)
parent.__init(self)
self.strength = strength
self.x_diff = torch.Tensor()
self.y_diff = torch.Tensor()
end
function TVLoss:updateOutput(input)
self.output = input
return self.output
end
-- TV loss backward pass inspired by kaishengtai/neuralart
function TVLoss:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input):zero()
local C, H, W = input:size(1), input:size(2), input:size(3)
self.x_diff:resize(3, H - 1, W - 1)
self.y_diff:resize(3, H - 1, W - 1)
self.x_diff:copy(input[{{}, {1, -2}, {1, -2}}])
self.x_diff:add(-1, input[{{}, {1, -2}, {2, -1}}])
self.y_diff:copy(input[{{}, {1, -2}, {1, -2}}])
self.y_diff:add(-1, input[{{}, {2, -1}, {1, -2}}])
self.gradInput[{{}, {1, -2}, {1, -2}}]:add(self.x_diff):add(self.y_diff)
self.gradInput[{{}, {1, -2}, {2, -1}}]:add(-1, self.x_diff)
self.gradInput[{{}, {2, -1}, {1, -2}}]:add(-1, self.y_diff)
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
return self.gradInput
end
local params = cmd:parse(arg)
main(params)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment