View download_model.py
import os | |
import sys | |
import requests | |
from tqdm import tqdm | |
if len(sys.argv) != 3: | |
print('You must enter the model name as a parameter, e.g.: download_model.py 117M') | |
sys.exit(1) | |
model = sys.argv[1] |
View config.json
{ | |
"initializer_range": 0.02, | |
"layer_norm_epsilon": 1e-05, | |
"n_ctx": 1024, | |
"n_embd": 1024, | |
"n_head": 16, | |
"n_layer": 24, | |
"n_positions": 1024, | |
"vocab_size": 50257 | |
} |
View Example of analyzing Annotations.ipynb
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
View complex_using_matrices.js
/* In a comment to Problem 6 of Linear Algebra Problem Book, | |
Halmos notes that the multiplication of complex numbers is a | |
special case of matrix multiplication via the representation | |
of complex number a + bi as the 2-by-2 matrix {{a, b}, {-b, a}}. | |
This is pretty nice because if we have a matrix data type with | |
a multiplication defined on it, we can just embed the complex | |
number in a matrix, multiply by another such embedding and | |
then extract the resulting complex number out. |
View config_perplexity.ipynb
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
View label2mat.m
function mat = label2mat(label, size) | |
if ~exist('size', 'var') || isempty(size) | |
size = 10; | |
end | |
if label > size | |
error('Label (%d) should be < size (%d).', label, size); | |
end |
View statistics.js
function sum(arr) { | |
return arr.reduce((acm, cur) => acm + cur, 0); | |
} | |
function mean(xs, correction) { | |
var correction = correction || 0; | |
var total = xs.length - correction; | |
return sum(xs) / total; | |
} |
View edit_distance.py
def memo(f): | |
"""Basic memoizer for positional parameters.""" | |
table = {} | |
def _f(*args): | |
if (args) not in table: | |
table[(args)] = f(*args) | |
return table[(args)] | |
return _f |
View countingsort.py
from collections import Counter | |
def sort(lst): | |
return [i for i, n in Counter(lst).items() for _ in range(n)] |
View scan.js
// What does scan*(id, op, arr) do? | |
// | |
// Given an identity element `id`, a binary associative | |
// operator `op`, and a list `arr`, returns a list of the | |
// same size where each item in that list is the op-sum | |
// of all previous items. | |
// | |
// E.g. sum(0, +, [3, 4]) => [(0 + 3), (3 + 4)] | |
// E.g. sum(1, *, [2, 5]) => [(1 * 2), (2 * 5)] |
NewerOlder