This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package org.apache.spark.test.app | |
import org.apache.spark.mllib.random.RandomRDDs | |
import org.apache.spark.rdd.RDD | |
import org.apache.spark.sql.SaveMode | |
import org.apache.spark.sql.hive.HiveContext | |
import org.apache.spark.util.collection.CompactBuffer | |
import org.apache.spark.{SparkConf, SparkContext} | |
import scala.collection.mutable | |
import scala.collection.mutable.{ArrayBuffer, ListBuffer} | |
trait TestGrouping { | |
def groupKeyValueRDD(keyValueRDD: RDD[(Int, Long)]): RDD[(Int, Iterable[Long])] | |
def outputTable: String | |
def main(args: Array[String]): Unit = { | |
val conf: SparkConf = new SparkConf() | |
val sc = new SparkContext(conf) | |
val hc = new HiveContext(sc) | |
import hc.implicits._ | |
val longRDD: RDD[Long] = | |
RandomRDDs.normalRDD(sc, 100*1000*1000, 1000) | |
.map(_ * 1000 * 1000) | |
.map(_.toLong) | |
val keyValuePairRDD: RDD[(Int, Long)] = | |
longRDD | |
.keyBy(n => (n / 100000).toInt) | |
val groupedRDD: RDD[(Int, Iterable[Long])] = | |
groupKeyValueRDD(keyValuePairRDD) | |
val groupStatRDD: RDD[(Int, (Int, Double, Double))] = | |
groupedRDD.mapValues(numbers => { | |
var (sum, count) = (0L, 0) | |
for (num <- numbers) { | |
sum += num | |
count += 1 | |
} | |
val mean = (sum * 1.0) / count | |
var sqDevSum = 0.0 | |
for (num <- numbers) { | |
sqDevSum += Math.pow(num - mean, 2) | |
} | |
val stdDev = Math.sqrt(sqDevSum / count) | |
(count, mean, stdDev) | |
}) | |
groupStatRDD | |
.map({case (key, (count, mean, stdDev)) => (key, count, mean, stdDev)}) | |
.toDF("key", "count", "mean", "std_dev") | |
.write.mode(SaveMode.Overwrite) | |
.saveAsTable(outputTable) | |
} | |
} | |
object TestReduceByKeyWithArrayBuffer extends TestGrouping { | |
override def groupKeyValueRDD(keyValueRDD: RDD[(Int, Long)]): RDD[(Int, Iterable[Long])] = { | |
keyValueRDD | |
.mapValues(ArrayBuffer(_)) | |
.reduceByKey(_ ++= _, numPartitions = 200) | |
.asInstanceOf[RDD[(Int, Iterable[Long])]] | |
} | |
override def outputTable: String = "reducebykey_arraybuffer" | |
} | |
object TestReduceByKeyWithListBuffer extends TestGrouping { | |
override def groupKeyValueRDD(keyValueRDD: RDD[(Int, Long)]): RDD[(Int, Iterable[Long])] = { | |
keyValueRDD | |
.mapValues(ListBuffer(_)) | |
.reduceByKey(_ ++= _, numPartitions = 200) | |
.asInstanceOf[RDD[(Int, Iterable[Long])]] | |
} | |
override def outputTable: String = "reducebykey_listbuffer" | |
} | |
object TestReduceByKeyWithUnrolledBuffer extends TestGrouping { | |
override def groupKeyValueRDD(keyValueRDD: RDD[(Int, Long)]): RDD[(Int, Iterable[Long])] = { | |
keyValueRDD | |
.mapValues(mutable.UnrolledBuffer(_)) | |
.reduceByKey(_ concat _, numPartitions = 200) | |
.asInstanceOf[RDD[(Int, Iterable[Long])]] | |
} | |
override def outputTable: String = "reducebykey_unrolledbuffer" | |
} | |
object TestReduceByKeyWithCompactBuffer extends TestGrouping { | |
override def groupKeyValueRDD(keyValueRDD: RDD[(Int, Long)]): RDD[(Int, Iterable[Long])] = { | |
keyValueRDD | |
.mapValues(CompactBuffer(_)) | |
.reduceByKey(_ ++= _, numPartitions = 200) | |
.asInstanceOf[RDD[(Int, Iterable[Long])]] | |
} | |
override def outputTable: String = "reducebykey_compactbuffer" | |
} | |
object TestGroupingWithGroupByKey extends TestGrouping { | |
override def groupKeyValueRDD(keyValueRDD: RDD[(Int, Long)]): RDD[(Int, Iterable[Long])] = { | |
keyValueRDD | |
.groupByKey(numPartitions = 200) | |
} | |
override def outputTable: String = "groupbykey" | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment