Skip to content

Instantly share code, notes, and snippets.

@ibtaylor
Last active February 27, 2017 20:48
Show Gist options
  • Save ibtaylor/63a54a30cb5ca85e92c60c899d44c264 to your computer and use it in GitHub Desktop.
Save ibtaylor/63a54a30cb5ca85e92c60c899d44c264 to your computer and use it in GitHub Desktop.
crude sophus interpolation benchmark

BenchTimer.h basically borrowed from eigen source.

g++ -Wall -Wextra -march=native -DNDEBUG -O3 -std=c++11 -isystem $EIGEN_ROOT -isystem $SOPHUS_ROOT se3d_vs_sim3d.cc && ./a.out

se3d interp 2397.83ms 20852.180785 interpolations/s

sim3d interp 36.122524ms 1384177.916250 interpolations/s

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BENCH_TIMERR_H
#define EIGEN_BENCH_TIMERR_H
#if defined(_WIN32) || defined(__CYGWIN__)
# ifndef NOMINMAX
# define NOMINMAX
# define EIGEN_BT_UNDEF_NOMINMAX
# endif
# ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
# define EIGEN_BT_UNDEF_WIN32_LEAN_AND_MEAN
# endif
# include <windows.h>
#elif defined(__APPLE__)
#include <mach/mach_time.h>
#else
# include <unistd.h>
#endif
static void clobber() {
asm volatile("" : : : "memory");
}
#include <Eigen/Core>
namespace Eigen
{
enum {
CPU_TIMER = 0,
REAL_TIMER = 1
};
/** Elapsed time timer keeping the best try.
*
* On POSIX platforms we use clock_gettime with CLOCK_PROCESS_CPUTIME_ID.
* On Windows we use QueryPerformanceCounter
*
* Important: on linux, you must link with -lrt
*/
class BenchTimer
{
public:
BenchTimer()
{
#if defined(_WIN32) || defined(__CYGWIN__)
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
m_frequency = (double)freq.QuadPart;
#endif
reset();
}
~BenchTimer() {}
inline void reset()
{
m_bests.fill(1e9);
m_worsts.fill(0);
m_totals.setZero();
}
inline void start()
{
m_starts[CPU_TIMER] = getCpuTime();
m_starts[REAL_TIMER] = getRealTime();
}
inline void stop()
{
m_times[CPU_TIMER] = getCpuTime() - m_starts[CPU_TIMER];
m_times[REAL_TIMER] = getRealTime() - m_starts[REAL_TIMER];
#if EIGEN_VERSION_AT_LEAST(2,90,0)
m_bests = m_bests.cwiseMin(m_times);
m_worsts = m_worsts.cwiseMax(m_times);
#else
m_bests(0) = std::min(m_bests(0),m_times(0));
m_bests(1) = std::min(m_bests(1),m_times(1));
m_worsts(0) = std::max(m_worsts(0),m_times(0));
m_worsts(1) = std::max(m_worsts(1),m_times(1));
#endif
m_totals += m_times;
}
/** Return the elapsed time in seconds between the last start/stop pair
*/
inline double value(int TIMER = CPU_TIMER) const
{
return m_times[TIMER];
}
/** Return the best elapsed time in seconds
*/
inline double best(int TIMER = CPU_TIMER) const
{
return m_bests[TIMER];
}
/** Return the worst elapsed time in seconds
*/
inline double worst(int TIMER = CPU_TIMER) const
{
return m_worsts[TIMER];
}
/** Return the total elapsed time in seconds.
*/
inline double total(int TIMER = CPU_TIMER) const
{
return m_totals[TIMER];
}
inline double getCpuTime() const
{
#ifdef _WIN32
LARGE_INTEGER query_ticks;
QueryPerformanceCounter(&query_ticks);
return query_ticks.QuadPart/m_frequency;
#elif __APPLE__
return double(mach_absolute_time())*1e-9;
#else
timespec ts;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
return double(ts.tv_sec) + 1e-9 * double(ts.tv_nsec);
#endif
}
inline double getRealTime() const
{
#ifdef _WIN32
SYSTEMTIME st;
GetSystemTime(&st);
return (double)st.wSecond + 1.e-3 * (double)st.wMilliseconds;
#elif __APPLE__
return double(mach_absolute_time())*1e-9;
#else
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return double(ts.tv_sec) + 1e-9 * double(ts.tv_nsec);
#endif
}
protected:
#if defined(_WIN32) || defined(__CYGWIN__)
double m_frequency;
#endif
Vector2d m_starts;
Vector2d m_times;
Vector2d m_bests;
Vector2d m_worsts;
Vector2d m_totals;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
#define BENCH(TIMER,TRIES,REP,CODE) { \
TIMER.reset(); \
for(int uglyvarname1=0; uglyvarname1<TRIES; ++uglyvarname1){ \
TIMER.start(); \
for(int uglyvarname2=0; uglyvarname2<REP; ++uglyvarname2){ \
CODE; \
} \
TIMER.stop(); \
clobber(); \
} \
}
}
// clean #defined tokens
#ifdef EIGEN_BT_UNDEF_NOMINMAX
# undef EIGEN_BT_UNDEF_NOMINMAX
# undef NOMINMAX
#endif
#ifdef EIGEN_BT_UNDEF_WIN32_LEAN_AND_MEAN
# undef EIGEN_BT_UNDEF_WIN32_LEAN_AND_MEAN
# undef WIN32_LEAN_AND_MEAN
#endif
#endif // EIGEN_BENCH_TIMERR_H
#include <fstream>
#include <Eigen/StdVector>
#include <Eigen/Geometry>
#include <sophus/se3.hpp>
#include <sophus/sim3.hpp>
#include <sophus/interpolate.hpp>
#include "BenchTimer.h"
template <class T> using AlignedVector = std::vector<T,Eigen::aligned_allocator<T>>;
template <typename SophusT>
static inline
void Interp(const SophusT& pose0,
const SophusT& pose1,
int num_steps,
AlignedVector<Eigen::Isometry3d>& poses) {
poses.clear();
poses.reserve(num_steps);
for (int i=0; i<num_steps; ++i) {
const double t = static_cast<double>(i)/num_steps;
poses.emplace_back(Sophus::interpolate(pose0, pose1, t).matrix());
}
}
int main(int argc, char **argv) {
(void)argc;
(void)argv;
const Eigen::Quaterniond q0 = Eigen::Quaterniond::Identity();
const Eigen::Quaterniond q1 = Eigen::AngleAxisd(0.0*M_PI, Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(1.0*M_PI, Eigen::Vector3d::UnitX()) *
Eigen::AngleAxisd(0.0*M_PI, Eigen::Vector3d::UnitZ());
const Eigen::Vector3d t0 = Eigen::Vector3d::Zero();
const Eigen::Vector3d t1 = Eigen::Vector3d::Constant(1.0);
const int tries = 2;
const int rep = 5;
const int num_steps = 10000;
AlignedVector<Eigen::Isometry3d> poses0;
AlignedVector<Eigen::Isometry3d> poses1;
{
Eigen::BenchTimer t;
const Sophus::SE3d pose0(q0,t0);
const Sophus::SE3d pose1(q1,t1);
BENCH(t, tries, rep, Interp(pose0, pose1, num_steps, poses0));
std::ofstream ofs("se3d.xyz");
std::cerr << "se3d interp " << 1e3*t.best(Eigen::CPU_TIMER) << "ms \t" << std::fixed << double(num_steps*rep)/(t.best(Eigen::CPU_TIMER)) << " interpolations/s\n";
for (const auto& pose : poses0) {
const Eigen::Vector3d t = pose.translation();
ofs << t.x() << " " << t.y() << " " << t.z() << std::endl;
}
}
{
Eigen::BenchTimer t;
const Sophus::Sim3d pose0(q0,t0);
const Sophus::Sim3d pose1(q1,t1);
BENCH(t, tries, rep, Interp(pose0, pose1, num_steps, poses1));
std::cerr << "sim3d interp " << 1e3*t.best(Eigen::CPU_TIMER) << "ms \t" << std::fixed << double(num_steps*rep)/(t.best(Eigen::CPU_TIMER)) << " interpolations/s\n";
std::ofstream ofs("sim3d.xyz");
for (const auto& pose : poses1) {
const Eigen::Vector3d t = pose.translation();
ofs << t.x() << " " << t.y() << " " << t.z() << std::endl;
}
}
if (poses0.size() != poses1.size()) {
std::cerr << "unexpected result size" << std::endl;
exit(EXIT_FAILURE);
}
for (size_t i=0; i<poses0.size(); ++i) {
const Eigen::Matrix4d& a = poses0[i].matrix();
const Eigen::Matrix4d& b = poses1[i].matrix();
if (!a.isApprox(b))
std::cerr << "not approx: " << i << std::endl;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment