Last active
December 7, 2024 11:17
-
-
Save igv/a015fc885d5c22e6891820ad89555637 to your computer and use it in GitHub Desktop.
Good test pattern: https://www.rtings.com/images/test-materials/2017/chroma-444.png (Compress it with any lossy codec first, for example jpeg. You can do it with mpv, only add screenshot-jpeg-source-chroma=no to mpv.conf). Usage: glsl-shader="~~/KrigBilateral.glsl"
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// KrigBilateral by Shiandow | |
// | |
// This library is free software; you can redistribute it and/or | |
// modify it under the terms of the GNU Lesser General Public | |
// License as published by the Free Software Foundation; either | |
// version 3.0 of the License, or (at your option) any later version. | |
// | |
// This library is distributed in the hope that it will be useful, | |
// but WITHOUT ANY WARRANTY; without even the implied warranty of | |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
// Lesser General Public License for more details. | |
// | |
// You should have received a copy of the GNU Lesser General Public | |
// License along with this library. | |
//!HOOK CHROMA | |
//!BIND LUMA | |
//!BIND HOOKED | |
//!SAVE LOWRES_Y | |
//!WIDTH LUMA.w | |
//!WHEN CHROMA.w LUMA.w < | |
//!DESC KrigBilateral Downscaling Y pass 1 | |
#define offset vec2(0) | |
#define axis 1 | |
#define Kernel(x) dot(vec3(0.42659, -0.49656, 0.076849), cos(vec3(0, 1, 2) * acos(-1.) * (x + 1.))) | |
vec4 hook() { | |
// Calculate bounds | |
float low = ceil((LUMA_pos - CHROMA_pt) * LUMA_size - offset - 0.5)[axis]; | |
float high = floor((LUMA_pos + CHROMA_pt) * LUMA_size - offset - 0.5)[axis]; | |
float W = 0.0; | |
vec4 avg = vec4(0); | |
vec2 pos = LUMA_pos; | |
for (float k = low; k <= high; k++) { | |
pos[axis] = LUMA_pt[axis] * (k - offset[axis] + 0.5); | |
float rel = (pos[axis] - LUMA_pos[axis])*CHROMA_size[axis]; | |
float w = Kernel(rel); | |
vec4 y = textureGrad(LUMA_raw, pos, vec2(0.0), vec2(0.0)).xxxx * LUMA_mul; | |
y.y *= y.y; | |
avg += w * y; | |
W += w; | |
} | |
avg /= W; | |
avg.y = abs(avg.y - avg.x * avg.x); | |
return avg; | |
} | |
//!HOOK CHROMA | |
//!BIND LOWRES_Y | |
//!BIND HOOKED | |
//!SAVE LOWRES_Y | |
//!WHEN CHROMA.w LUMA.w < | |
//!DESC KrigBilateral Downscaling Y pass 2 | |
#define offset vec2(0) | |
#define axis 0 | |
#define Kernel(x) dot(vec3(0.42659, -0.49656, 0.076849), cos(vec3(0, 1, 2) * acos(-1.) * (x + 1.))) | |
vec4 hook() { | |
// Calculate bounds | |
float low = ceil((LOWRES_Y_pos - CHROMA_pt) * LOWRES_Y_size - offset - 0.5)[axis]; | |
float high = floor((LOWRES_Y_pos + CHROMA_pt) * LOWRES_Y_size - offset - 0.5)[axis]; | |
float W = 0.0; | |
vec4 avg = vec4(0); | |
vec2 pos = LOWRES_Y_pos; | |
for (float k = low; k <= high; k++) { | |
pos[axis] = LOWRES_Y_pt[axis] * (k - offset[axis] + 0.5); | |
float rel = (pos[axis] - LOWRES_Y_pos[axis])*CHROMA_size[axis]; | |
float w = Kernel(rel); | |
vec4 y = textureGrad(LOWRES_Y_raw, pos, vec2(0.0), vec2(0.0)).xxxx * LOWRES_Y_mul; | |
y.y *= y.y; | |
avg += w * y; | |
W += w; | |
} | |
avg /= W; | |
avg.y = abs(avg.y - avg.x * avg.x) + LOWRES_Y_texOff(0).y; | |
return avg; | |
} | |
//!HOOK CHROMA | |
//!BIND HOOKED | |
//!BIND LUMA | |
//!BIND LOWRES_Y | |
//!WIDTH LUMA.w | |
//!HEIGHT LUMA.h | |
//!WHEN CHROMA.w LUMA.w < | |
//!OFFSET ALIGN | |
//!DESC KrigBilateral Upscaling UV | |
#define sigma_nsq 256.0/(255.0*255.0) | |
#define N 8 | |
#define sqr(x) dot(x,x) | |
#define M(i,j) Mx[min(i,j)*N + max(i,j) - (min(i,j)*(min(i,j)+1))/2] | |
#define C(i,j) (inversesqrt(1.0 + (X[i].y + X[j].y) / Var) * exp(-0.5 * (sqr(X[i].x - X[j].x) / (localVar + X[i].y + X[j].y) + sqr((coords[i] - coords[j]) / radius))) /*+ (X[i].x - y) * (X[j].x - y) / Var*/) // commented out part works well only on test patterns | |
#define c(i) (inversesqrt(1.0 + X[i].y / Var) * exp(-0.5 * (sqr(X[i].x - y) / (localVar + X[i].y) + sqr((coords[i] - offset) / radius)))) | |
#define getnsum(i) X[i] = vec4(LOWRES_Y_tex(LOWRES_Y_pt*(pos+coords[i]+vec2(0.5))).xy, \ | |
CHROMA_tex(CHROMA_pt*(pos+coords[i]+vec2(0.5))).xy); \ | |
w = clamp(1.5 - abs(coords[i]), 0.0, 1.0); \ | |
total += w.x*w.y*vec4(X[i].x, X[i].x * X[i].x, X[i].y, 1.0); | |
#define I3(f, n) f(n) f(n+1) f(n+2) | |
#define I9(f, n) I3(f, n) I3(f, n+3) I3(f, n+6) | |
vec4 hook() { | |
vec2 pos = CHROMA_pos * HOOKED_size - vec2(0.5); | |
vec2 offset = pos - round(pos); | |
pos -= offset; | |
vec2 coords[N+1]; | |
vec4 X[N+1]; | |
vec2 w; | |
vec4 total = vec4(0); | |
coords[0] = vec2(-1,-1); coords[1] = vec2(-1, 0); coords[2] = vec2(-1, 1); | |
coords[3] = vec2( 0,-1); coords[4] = vec2( 0, 1); coords[5] = vec2( 1,-1); | |
coords[6] = vec2( 1, 0); coords[7] = vec2( 1, 1); coords[8] = vec2( 0, 0); | |
I9(getnsum, 0) | |
total.xyz /= total.w; | |
float localVar = abs(total.y - total.x * total.x) + sigma_nsq; | |
float Var = localVar + total.z; | |
float radius = 1.5; // mix(1.5, 1.0, sigma_nsq / Var); | |
float y = LUMA_texOff(0).x; | |
float Mx[(N*(N+1))/2]; | |
float b[N]; | |
vec2 interp = X[N].zw; | |
b[0] = c(0) - c(N) - C(0,N) + C(N,N); M(0, 0) = C(0,0) - C(0,N) - C(0,N) + C(N,N); M(0, 1) = C(0,1) - C(1,N) - C(0,N) + C(N,N); M(0, 2) = C(0,2) - C(2,N) - C(0,N) + C(N,N); M(0, 3) = C(0,3) - C(3,N) - C(0,N) + C(N,N); M(0, 4) = C(0,4) - C(4,N) - C(0,N) + C(N,N); M(0, 5) = C(0,5) - C(5,N) - C(0,N) + C(N,N); M(0, 6) = C(0,6) - C(6,N) - C(0,N) + C(N,N); M(0, 7) = C(0,7) - C(7,N) - C(0,N) + C(N,N); | |
b[1] = c(1) - c(N) - C(1,N) + C(N,N); M(1, 1) = C(1,1) - C(1,N) - C(1,N) + C(N,N); M(1, 2) = C(1,2) - C(2,N) - C(1,N) + C(N,N); M(1, 3) = C(1,3) - C(3,N) - C(1,N) + C(N,N); M(1, 4) = C(1,4) - C(4,N) - C(1,N) + C(N,N); M(1, 5) = C(1,5) - C(5,N) - C(1,N) + C(N,N); M(1, 6) = C(1,6) - C(6,N) - C(1,N) + C(N,N); M(1, 7) = C(1,7) - C(7,N) - C(1,N) + C(N,N); | |
b[2] = c(2) - c(N) - C(2,N) + C(N,N); M(2, 2) = C(2,2) - C(2,N) - C(2,N) + C(N,N); M(2, 3) = C(2,3) - C(3,N) - C(2,N) + C(N,N); M(2, 4) = C(2,4) - C(4,N) - C(2,N) + C(N,N); M(2, 5) = C(2,5) - C(5,N) - C(2,N) + C(N,N); M(2, 6) = C(2,6) - C(6,N) - C(2,N) + C(N,N); M(2, 7) = C(2,7) - C(7,N) - C(2,N) + C(N,N); | |
b[3] = c(3) - c(N) - C(3,N) + C(N,N); M(3, 3) = C(3,3) - C(3,N) - C(3,N) + C(N,N); M(3, 4) = C(3,4) - C(4,N) - C(3,N) + C(N,N); M(3, 5) = C(3,5) - C(5,N) - C(3,N) + C(N,N); M(3, 6) = C(3,6) - C(6,N) - C(3,N) + C(N,N); M(3, 7) = C(3,7) - C(7,N) - C(3,N) + C(N,N); | |
b[4] = c(4) - c(N) - C(4,N) + C(N,N); M(4, 4) = C(4,4) - C(4,N) - C(4,N) + C(N,N); M(4, 5) = C(4,5) - C(5,N) - C(4,N) + C(N,N); M(4, 6) = C(4,6) - C(6,N) - C(4,N) + C(N,N); M(4, 7) = C(4,7) - C(7,N) - C(4,N) + C(N,N); | |
b[5] = c(5) - c(N) - C(5,N) + C(N,N); M(5, 5) = C(5,5) - C(5,N) - C(5,N) + C(N,N); M(5, 6) = C(5,6) - C(6,N) - C(5,N) + C(N,N); M(5, 7) = C(5,7) - C(7,N) - C(5,N) + C(N,N); | |
b[6] = c(6) - c(N) - C(6,N) + C(N,N); M(6, 6) = C(6,6) - C(6,N) - C(6,N) + C(N,N); M(6, 7) = C(6,7) - C(7,N) - C(6,N) + C(N,N); | |
b[7] = c(7) - c(N) - C(7,N) + C(N,N); M(7, 7) = C(7,7) - C(7,N) - C(7,N) + C(N,N); | |
b[1] -= b[0] * M(0, 1) / M(0, 0); M(1, 1) -= M(0, 1) * M(0, 1) / M(0, 0); M(1, 2) -= M(0, 2) * M(0, 1) / M(0, 0); M(1, 3) -= M(0, 3) * M(0, 1) / M(0, 0); M(1, 4) -= M(0, 4) * M(0, 1) / M(0, 0); M(1, 5) -= M(0, 5) * M(0, 1) / M(0, 0); M(1, 6) -= M(0, 6) * M(0, 1) / M(0, 0); M(1, 7) -= M(0, 7) * M(0, 1) / M(0, 0); | |
b[2] -= b[0] * M(0, 2) / M(0, 0); M(2, 2) -= M(0, 2) * M(0, 2) / M(0, 0); M(2, 3) -= M(0, 3) * M(0, 2) / M(0, 0); M(2, 4) -= M(0, 4) * M(0, 2) / M(0, 0); M(2, 5) -= M(0, 5) * M(0, 2) / M(0, 0); M(2, 6) -= M(0, 6) * M(0, 2) / M(0, 0); M(2, 7) -= M(0, 7) * M(0, 2) / M(0, 0); | |
b[3] -= b[0] * M(0, 3) / M(0, 0); M(3, 3) -= M(0, 3) * M(0, 3) / M(0, 0); M(3, 4) -= M(0, 4) * M(0, 3) / M(0, 0); M(3, 5) -= M(0, 5) * M(0, 3) / M(0, 0); M(3, 6) -= M(0, 6) * M(0, 3) / M(0, 0); M(3, 7) -= M(0, 7) * M(0, 3) / M(0, 0); | |
b[4] -= b[0] * M(0, 4) / M(0, 0); M(4, 4) -= M(0, 4) * M(0, 4) / M(0, 0); M(4, 5) -= M(0, 5) * M(0, 4) / M(0, 0); M(4, 6) -= M(0, 6) * M(0, 4) / M(0, 0); M(4, 7) -= M(0, 7) * M(0, 4) / M(0, 0); | |
b[5] -= b[0] * M(0, 5) / M(0, 0); M(5, 5) -= M(0, 5) * M(0, 5) / M(0, 0); M(5, 6) -= M(0, 6) * M(0, 5) / M(0, 0); M(5, 7) -= M(0, 7) * M(0, 5) / M(0, 0); | |
b[6] -= b[0] * M(0, 6) / M(0, 0); M(6, 6) -= M(0, 6) * M(0, 6) / M(0, 0); M(6, 7) -= M(0, 7) * M(0, 6) / M(0, 0); | |
b[7] -= b[0] * M(0, 7) / M(0, 0); M(7, 7) -= M(0, 7) * M(0, 7) / M(0, 0); | |
b[2] -= b[1] * M(1, 2) / M(1, 1); M(2, 2) -= M(1, 2) * M(1, 2) / M(1, 1); M(2, 3) -= M(1, 3) * M(1, 2) / M(1, 1); M(2, 4) -= M(1, 4) * M(1, 2) / M(1, 1); M(2, 5) -= M(1, 5) * M(1, 2) / M(1, 1); M(2, 6) -= M(1, 6) * M(1, 2) / M(1, 1); M(2, 7) -= M(1, 7) * M(1, 2) / M(1, 1); | |
b[3] -= b[1] * M(1, 3) / M(1, 1); M(3, 3) -= M(1, 3) * M(1, 3) / M(1, 1); M(3, 4) -= M(1, 4) * M(1, 3) / M(1, 1); M(3, 5) -= M(1, 5) * M(1, 3) / M(1, 1); M(3, 6) -= M(1, 6) * M(1, 3) / M(1, 1); M(3, 7) -= M(1, 7) * M(1, 3) / M(1, 1); | |
b[4] -= b[1] * M(1, 4) / M(1, 1); M(4, 4) -= M(1, 4) * M(1, 4) / M(1, 1); M(4, 5) -= M(1, 5) * M(1, 4) / M(1, 1); M(4, 6) -= M(1, 6) * M(1, 4) / M(1, 1); M(4, 7) -= M(1, 7) * M(1, 4) / M(1, 1); | |
b[5] -= b[1] * M(1, 5) / M(1, 1); M(5, 5) -= M(1, 5) * M(1, 5) / M(1, 1); M(5, 6) -= M(1, 6) * M(1, 5) / M(1, 1); M(5, 7) -= M(1, 7) * M(1, 5) / M(1, 1); | |
b[6] -= b[1] * M(1, 6) / M(1, 1); M(6, 6) -= M(1, 6) * M(1, 6) / M(1, 1); M(6, 7) -= M(1, 7) * M(1, 6) / M(1, 1); | |
b[7] -= b[1] * M(1, 7) / M(1, 1); M(7, 7) -= M(1, 7) * M(1, 7) / M(1, 1); | |
b[3] -= b[2] * M(2, 3) / M(2, 2); M(3, 3) -= M(2, 3) * M(2, 3) / M(2, 2); M(3, 4) -= M(2, 4) * M(2, 3) / M(2, 2); M(3, 5) -= M(2, 5) * M(2, 3) / M(2, 2); M(3, 6) -= M(2, 6) * M(2, 3) / M(2, 2); M(3, 7) -= M(2, 7) * M(2, 3) / M(2, 2); | |
b[4] -= b[2] * M(2, 4) / M(2, 2); M(4, 4) -= M(2, 4) * M(2, 4) / M(2, 2); M(4, 5) -= M(2, 5) * M(2, 4) / M(2, 2); M(4, 6) -= M(2, 6) * M(2, 4) / M(2, 2); M(4, 7) -= M(2, 7) * M(2, 4) / M(2, 2); | |
b[5] -= b[2] * M(2, 5) / M(2, 2); M(5, 5) -= M(2, 5) * M(2, 5) / M(2, 2); M(5, 6) -= M(2, 6) * M(2, 5) / M(2, 2); M(5, 7) -= M(2, 7) * M(2, 5) / M(2, 2); | |
b[6] -= b[2] * M(2, 6) / M(2, 2); M(6, 6) -= M(2, 6) * M(2, 6) / M(2, 2); M(6, 7) -= M(2, 7) * M(2, 6) / M(2, 2); | |
b[7] -= b[2] * M(2, 7) / M(2, 2); M(7, 7) -= M(2, 7) * M(2, 7) / M(2, 2); | |
b[4] -= b[3] * M(3, 4) / M(3, 3); M(4, 4) -= M(3, 4) * M(3, 4) / M(3, 3); M(4, 5) -= M(3, 5) * M(3, 4) / M(3, 3); M(4, 6) -= M(3, 6) * M(3, 4) / M(3, 3); M(4, 7) -= M(3, 7) * M(3, 4) / M(3, 3); | |
b[5] -= b[3] * M(3, 5) / M(3, 3); M(5, 5) -= M(3, 5) * M(3, 5) / M(3, 3); M(5, 6) -= M(3, 6) * M(3, 5) / M(3, 3); M(5, 7) -= M(3, 7) * M(3, 5) / M(3, 3); | |
b[6] -= b[3] * M(3, 6) / M(3, 3); M(6, 6) -= M(3, 6) * M(3, 6) / M(3, 3); M(6, 7) -= M(3, 7) * M(3, 6) / M(3, 3); | |
b[7] -= b[3] * M(3, 7) / M(3, 3); M(7, 7) -= M(3, 7) * M(3, 7) / M(3, 3); | |
b[5] -= b[4] * M(4, 5) / M(4, 4); M(5, 5) -= M(4, 5) * M(4, 5) / M(4, 4); M(5, 6) -= M(4, 6) * M(4, 5) / M(4, 4); M(5, 7) -= M(4, 7) * M(4, 5) / M(4, 4); | |
b[6] -= b[4] * M(4, 6) / M(4, 4); M(6, 6) -= M(4, 6) * M(4, 6) / M(4, 4); M(6, 7) -= M(4, 7) * M(4, 6) / M(4, 4); | |
b[7] -= b[4] * M(4, 7) / M(4, 4); M(7, 7) -= M(4, 7) * M(4, 7) / M(4, 4); | |
b[6] -= b[5] * M(5, 6) / M(5, 5); M(6, 6) -= M(5, 6) * M(5, 6) / M(5, 5); M(6, 7) -= M(5, 7) * M(5, 6) / M(5, 5); | |
b[7] -= b[5] * M(5, 7) / M(5, 5); M(7, 7) -= M(5, 7) * M(5, 7) / M(5, 5); | |
b[7] -= b[6] * M(6, 7) / M(6, 6); M(7, 7) -= M(6, 7) * M(6, 7) / M(6, 6); | |
b[7] /= M(7, 7); | |
interp += b[7] * (X[7] - X[N]).zw; | |
b[6] -= M(6, 7) * b[7]; b[6] /= M(6, 6); | |
interp += b[6] * (X[6] - X[N]).zw; | |
b[5] -= M(5, 6) * b[6]; b[5] -= M(5, 7) * b[7]; b[5] /= M(5, 5); | |
interp += b[5] * (X[5] - X[N]).zw; | |
b[4] -= M(4, 5) * b[5]; b[4] -= M(4, 6) * b[6]; b[4] -= M(4, 7) * b[7]; b[4] /= M(4, 4); | |
interp += b[4] * (X[4] - X[N]).zw; | |
b[3] -= M(3, 4) * b[4]; b[3] -= M(3, 5) * b[5]; b[3] -= M(3, 6) * b[6]; b[3] -= M(3, 7) * b[7]; b[3] /= M(3, 3); | |
interp += b[3] * (X[3] - X[N]).zw; | |
b[2] -= M(2, 3) * b[3]; b[2] -= M(2, 4) * b[4]; b[2] -= M(2, 5) * b[5]; b[2] -= M(2, 6) * b[6]; b[2] -= M(2, 7) * b[7]; b[2] /= M(2, 2); | |
interp += b[2] * (X[2] - X[N]).zw; | |
b[1] -= M(1, 2) * b[2]; b[1] -= M(1, 3) * b[3]; b[1] -= M(1, 4) * b[4]; b[1] -= M(1, 5) * b[5]; b[1] -= M(1, 6) * b[6]; b[1] -= M(1, 7) * b[7]; b[1] /= M(1, 1); | |
interp += b[1] * (X[1] - X[N]).zw; | |
b[0] -= M(0, 1) * b[1]; b[0] -= M(0, 2) * b[2]; b[0] -= M(0, 3) * b[3]; b[0] -= M(0, 4) * b[4]; b[0] -= M(0, 5) * b[5]; b[0] -= M(0, 6) * b[6]; b[0] -= M(0, 7) * b[7]; b[0] /= M(0, 0); | |
interp += b[0] * (X[0] - X[N]).zw; | |
return interp.xyxy; | |
} |
@igv: Could you change bind order, as in the diff below?
@@ -14,8 +14,8 @@
// License along with this library.
//!HOOK CHROMA
-//!BIND HOOKED
//!BIND LUMA
+//!BIND HOOKED
//!SAVE LOWRES_Y
//!WIDTH LUMA.w
//!WHEN CHROMA.w LUMA.w <
@@ -52,8 +52,8 @@ vec4 hook() {
}
//!HOOK CHROMA
-//!BIND HOOKED
//!BIND LOWRES_Y
+//!BIND HOOKED
//!SAVE LOWRES_Y
//!WHEN CHROMA.w LUMA.w <
//!DESC KrigBilateral Downscaling Y pass 2
What happens is that in fragment shader CHROMA_pos
outputted from vertex shared is not used. And during the translation/optimization GLSL->SPIR-V->HLSL the actual input of the fragment shader is removed, which triggers validation error:
ID3D11DeviceContext::Draw: Vertex Shader - Pixel Shader linkage error: Signatures between stages are incompatible. Semantic 'TEXCOORD' of the input stage has a hardware register component mask that is not a subset of the output of the previous stage.
Basically we have this:
vertex:
struct SPIRV_Cross_Output
{
float2 _9 : TEXCOORD0;
float2 _13 : TEXCOORD1;
float4 gl_Position : SV_Position;
};
fragment:
struct SPIRV_Cross_Input
{
float2 _17 : TEXCOORD1;
};
and by changing the order, we use TEXCOORD0
and it is not tripping the validation. We can discard things from the end of input list, but not from beginning/middle.
Hope I make sense, just small workaround to make it work better when validation is enabled.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
It's all mpv bugs.