Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
Example PyData app on Cloud Foundry using Spyre ( and the Python conda buildpack (
- name: ih-spyre-test
memory: 1GB
buildpack: git://
timeout: 180
command: .conda/bin/python
"""Example Spyre app from"""
import matplotlib
# Needed to use headless
from spyre import server
import os
import matplotlib.pyplot as plt
import numpy as np
class SimpleSineApp(server.App):
title = "Simple Sine App"
inputs = [{ "input_type":"text",
outputs = [{"output_type":"plot",
"on_page_load":True }]
def getPlot(self, params):
f = float(params['freq'])
print f
x = np.arange(0,2*np.pi,np.pi/150)
y = np.sin(f*x)
fig = plt.figure()
splt1 = fig.add_subplot(1,1,1)
return fig
port = int(os.getenv("VCAP_APP_PORT"))
app = SimpleSineApp()
app.launch(port=port, host='')
## PyData stack on Cloud Foundry
The current Python buildpack uses `pip` to install dependencies. Anyone who has tried to install NumPy or SciPy using `pip` knows that the process can be lengthy and painful often requiring manual intervention to correct library paths and install Fortran compilers.
Fortunately [Continuum Analytics']( [conda package manager]( was created to solve these problems by packaging and distributing the standard tools of the Python data stack in compiled binaries.
I wanted to build web apps on Cloud Foundry using the PyData stack so with help from [a colleague]( I have written a [Cloud Foundry buildpack]( which uses both conda and pip to install required packages.
You can specify packages to be installed by `conda` in the `conda_requirements.txt` file and these will be installed first, followed by packages in the `requirements.txt` which will be installed as usual by `pip`.
This web app uses [Spyre]( by Adam Hajari which is available on PyPI as `dataspyre`.
"""Example Spyre app from"""
import matplotlib
# Needed to use headless
import os
from spyre import server
import pandas as pd
import urllib2
import json
class StockExample(server.App):
title = "Historical Stock Prices"
inputs = [{ "input_type":'dropdown',
"label": 'Company',
"options" : [ {"label": "Google", "value":"GOOG"},
{"label": "Yahoo", "value":"YHOO"},
{"label": "Apple", "value":"AAPL"}],
"variable_name": 'ticker',
"action_id": "update_data" }]
controls = [{ "control_type" : "hidden",
"label" : "get historical stock prices",
"control_id" : "update_data"}]
tabs = ["Plot", "Table"]
outputs = [{ "output_type" : "plot",
"output_id" : "plot",
"control_id" : "update_data",
"tab" : "Plot",
"on_page_load" : True },
{ "output_type" : "table",
"output_id" : "table_id",
"control_id" : "update_data",
"tab" : "Table",
"on_page_load" : True }]
def getData(self, params):
ticker = params['ticker']
# make call to yahoo finance api to get historical stock data
api_url = '{}/chartdata;type=quote;range=3m/json'.format(ticker)
result = urllib2.urlopen(api_url).read()
data = json.loads(result.replace('finance_charts_json_callback( ','')[:-1]) # strip away the javascript and load json
self.company_name = data['meta']['Company-Name']
df = pd.DataFrame.from_records(data['series'])
df['Date'] = pd.to_datetime(df['Date'],format='%Y%m%d')
return df
def getPlot(self, params):
df = self.getData(params)
plt_obj = df.set_index('Date').drop(['volume'],axis=1).plot()
fig = plt_obj.get_figure()
return fig
port = int(os.getenv("VCAP_APP_PORT"))
app = StockExample()
app.launch(port=port, host='')

This comment has been minimized.

Copy link

@ebergel ebergel commented Dec 20, 2014

Hi, I tried to reproduce what you did, but there might be a problem to install matplotlib
I got this error when I push the app
ERR grep: ./app/.conda/pkgs/matplotlib-1.4.2-np19py27_0/lib/ No such file or directory
any ideas?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.