Skip to content

Instantly share code, notes, and snippets.

@ikashnitsky
Last active January 24, 2018 05:13
Show Gist options
  • Save ikashnitsky/e1d93a51fe5e2b5ba770096060bacd8a to your computer and use it in GitHub Desktop.
Save ikashnitsky/e1d93a51fe5e2b5ba770096060bacd8a to your computer and use it in GitHub Desktop.
################################################################################
#
# ikashnitsky.github.io 2017-10-17
# Data acquisition in R - Part 1/4
# https://ikashnitsky.github.io/2017/data-acquisition-one
# Ilya Kashnitsky, ilya.kashnitsky@gmail.com
#
################################################################################
# load required packages
library(tidyverse) # data manipulation and viz
# built-in ---------------------------------------------------------------------
# Swiss Fertility and Socioeconomic Indicators (1888) Data. Let's check the difference in fertility based of rurality and domination of Catholic population.
swiss %>%
ggplot(aes(x = Agriculture, y = Fertility,
color = Catholic > 50))+
geom_point()+
stat_ellipse()+
theme_minimal(base_family = "mono")
ggsave("swiss.png", width = 8, height = 5)
# gapminder --------------------------------------------------------------------
library(gapminder)
gapminder %>%
ggplot(aes(x = year, y = lifeExp,
color = continent))+
geom_jitter(size = 1, alpha = .2, width = .75)+
stat_summary(geom = "path", fun.y = mean, size = 1)+
theme_minimal(base_family = "mono")
ggsave("gapminder.png", width = 8, height = 5)
# URL --------------------------------------------------------------------------
library(tidyverse)
galton <- read_csv("https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Galton.csv")
galton %>%
ggplot(aes(x = father, y = height))+
geom_point(alpha = .2)+
stat_smooth(method = "lm")+
theme_minimal(base_family = "mono")
ggsave("galton.png", width = 8, height = 5)
# UNZIP ------------------------------------------------------------------------
# create a directory for the unzipped data
ifelse(!dir.exists("unzipped"), dir.create("unzipped"), "Directory already exists")
# specify the URL of the archive
url_zip <- "http://www.nyc.gov/html/nypd/downloads/zip/analysis_and_planning/citywide_historical_crime_data_archive.zip"
# download, unzip and read data
f <- tempfile()
download.file(url_zip, destfile = f)
unzip(f, exdir = "unzipped/.")
# if we want to keep the .zip file
path_unzip <- "unzipped/data_archive.zip"
ifelse(!file.exists(path_unzip),
download.file(url_zip, path_unzip, mode="wb"),
'file alredy exists')
unzip(path_unzip, exdir = "unzipped/.")
library(readxl)
murder <- read_xls("unzipped/Web Data 2010-2011/Seven Major Felony Offenses 2000 - 2011.xls",
sheet = 1, range = "A5:M13") %>%
filter(OFFENSE %>% substr(1, 6) == "MURDER") %>%
gather("year", "value", 2:13) %>%
mutate(year = year %>% as.numeric())
# plot
murder %>%
ggplot(aes(year, value))+
geom_point()+
stat_smooth(method = "lm")+
theme_minimal(base_family = "mono")+
labs(title = "Murders in New York")
ggsave("new-york.png", width = 8, height = 5)
# Figshare ---------------------------------------------------------------------
library(rfigshare)
# find the dataset
# fs_search("ice hockey players") # not working
url <- fs_download(article_id = "3394735")
hockey <- read_csv(url)
hockey %>%
ggplot(aes(x = year, y = height))+
geom_jitter(size = 2, color = "#35978f", alpha = .1, width = .25)+
stat_smooth(method = "lm", size = 1)+
ylab("height, cm")+
xlab("year of competition")+
scale_x_continuous(breaks = seq(2005, 2015, 5), labels = seq(2005, 2015, 5))+
theme_minimal(base_family = "mono")
ggsave("ice-hockey.png", width = 8, height = 5)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment