Last active
February 10, 2020 15:19
-
-
Save ikatsov/4d39d15adc473cf7b13deeda7a017e21 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# parameters | |
prices = [1.99, 2.49, 2.99, 3.49, 3.99, 4.49] | |
alpha_0 = 30.00 # parameter of the prior distribution | |
beta_0 = 1.00 # parameter of the prior distribution | |
# parameters of the true (unknown) demand model | |
true_slop = 50 | |
true_intercept = -7 | |
# prior distribution for each price | |
p_theta = [] | |
for p in prices: | |
p_theta.append({'price': p, 'alpha': alpha_0, 'beta': beta_0}) | |
def sample_actual_demand(price): | |
demand = true_slop + true_intercept * price | |
return np.random.poisson(demand, 1)[0] | |
# sample mean demands for each price level | |
def sample_demands_from_model(p_theta): | |
return list(map(lambda v: | |
np.random.gamma(v['alpha'], 1/v['beta']), p_theta)) | |
# return price that maximizes the revenue | |
def optimal_price(prices, demands): | |
price_index = np.argmax(np.multiply(prices, demands)) | |
return price_index, prices[price_index] | |
# simulation loop | |
for t in range(0, T): | |
demands = sample_demands_from_model(p_theta) | |
price_index_t, price_t = optimal_price(prices, demands) | |
# offer the selected price and observe demand | |
demand_t = sample_actual_demand(price_t) | |
# update model parameters | |
v = p_theta[price_index_t] | |
v['alpha'] = v['alpha'] + demand_t | |
v['beta'] = v['beta'] + 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment