Last active
January 29, 2023 01:56
-
-
Save imvladikon/4315752e2b244c7dbc765fb66df99fe5 to your computer and use it in GitHub Desktop.
duckdb + huggingface datasets
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import duckdb | |
import pyarrow as pa | |
from datasets import Dataset | |
try: | |
from ibis.backends.base.sql.alchemy import AlchemyTable | |
IBIS_AVAILABLE = True | |
except: | |
IBIS_AVAILABLE = False | |
class DatasetQuery: | |
""" | |
duckdb wrapper for executing queries over huggingface datasets | |
""" | |
def __init__(self, arrow_table, table_name="arrow_table"): | |
self.table_name = table_name | |
self.connection = duckdb.connect(":memory:") | |
self.connection.register(table_name, arrow_table) | |
def query(self, query: str) -> "Dataset": | |
result = self.connection.query(query).to_arrow_table() | |
with pa.BufferOutputStream() as buf_writer, pa.RecordBatchStreamWriter( | |
buf_writer, schema=result.schema | |
) as writer: | |
writer.write_table(result) | |
result = Dataset.from_buffer(buf_writer.getvalue()) | |
return result | |
@classmethod | |
def from_hf_dataset(self, dataset: Dataset, **kwargs) -> "DatasetQuery": | |
arrow_table = dataset.data.table | |
return DatasetQuery(arrow_table, **kwargs) | |
if IBIS_AVAILABLE: | |
class IbisTableFactory(AlchemyTable): | |
""" | |
duckdb+ibis wrapper | |
""" | |
@staticmethod | |
def from_hf_dataset(dataset: Dataset, table_name: str) -> "pd.DataFrame": | |
import ibis | |
arrow_table = dataset.data.table | |
con = ibis.connect('duckdb://:memory:') | |
con.register(arrow_table, table_name=table_name) | |
table = con.table(table_name) | |
return table | |
if __name__ == '__main__': | |
dataset = Dataset.from_csv("data/insurance.csv") | |
dataset_query = DatasetQuery.from_hf_dataset(dataset, table_name="insurance_demo_table") | |
print(dataset_query.query("SELECT * FROM insurance_demo_table LIMIT 10").to_pandas()) | |
if IBIS_AVAILABLE: | |
ibis_table = IbisTableFactory.from_hf_dataset(dataset, table_name="insurance_demo_table") | |
print(ibis_table.group_by("smoker").bmi.mean().execute()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment