Skip to content

Instantly share code, notes, and snippets.

@inducer
Created July 5, 2021 05:00
Show Gist options
  • Save inducer/f836e9913a5c4121857f50814e5662e3 to your computer and use it in GitHub Desktop.
Save inducer/f836e9913a5c4121857f50814e5662e3 to your computer and use it in GitHub Desktop.
"""Minimal example of a grudge driver."""
__copyright__ = """
Copyright (C) 2020 Andreas Kloeckner
Copyright (C) 2021 University of Illinois Board of Trustees
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la # noqa
import pyopencl as cl
import pyopencl.tools as cl_tools
from arraycontext import thaw
from grudge.array_context import PyOpenCLArrayContext
from pytools.obj_array import flat_obj_array
from meshmode.mesh import BTAG_ALL, BTAG_NONE # noqa
from grudge.discretization import DiscretizationCollection
from grudge.shortcuts import make_visualizer
import grudge.op as op
import logging
logger = logging.getLogger(__name__)
from mpi4py import MPI
# {{{ wave equation bits
def wave_flux(dcoll, c, w_tpair):
u = w_tpair[0]
v = w_tpair[1:]
normal = thaw(dcoll.normal(w_tpair.dd), u.int.array_context)
flux_weak = flat_obj_array(
np.dot(v.avg, normal),
normal*u.avg,
)
# upwind
v_jump = np.dot(normal, v.ext-v.int)
flux_weak += flat_obj_array(
0.5*(u.ext-u.int),
0.5*normal*v_jump,
)
return op.project(dcoll, w_tpair.dd, "all_faces", c*flux_weak)
def wave_operator(dcoll, c, w):
u = w[0]
v = w[1:]
dir_u = op.project(dcoll, "vol", BTAG_ALL, u)
dir_v = op.project(dcoll, "vol", BTAG_ALL, v)
dir_bval = flat_obj_array(dir_u, dir_v)
dir_bc = flat_obj_array(-dir_u, dir_v)
return (
op.inverse_mass(
dcoll,
flat_obj_array(
-c*op.weak_local_div(dcoll, v),
-c*op.weak_local_grad(dcoll, u)
)
+ op.face_mass(
dcoll,
wave_flux(
dcoll, c=c,
w_tpair=op.bdry_trace_pair(dcoll,
BTAG_ALL,
interior=dir_bval,
exterior=dir_bc)
) + sum(
wave_flux(dcoll, c=c, w_tpair=tpair)
for tpair in op.interior_trace_pairs(dcoll, w)
)
)
)
)
# }}}
def rk4_step(y, t, h, f):
k1 = f(t, y)
k2 = f(t+h/2, y + h/2*k1)
k3 = f(t+h/2, y + h/2*k2)
k4 = f(t+h, y + h*k3)
return y + h/6*(k1 + 2*k2 + 2*k3 + k4)
def estimate_rk4_timestep(actx, dcoll, c):
from grudge.dt_utils import characteristic_lengthscales
local_dts = characteristic_lengthscales(actx, dcoll) / c
return op.nodal_min(dcoll, "vol", local_dts)
def bump(actx, dcoll, t=0):
source_center = np.array([0.2, 0.35, 0.1])[:dcoll.dim]
source_width = 0.05
source_omega = 3
nodes = thaw(dcoll.nodes(), actx)
center_dist = flat_obj_array([
nodes[i] - source_center[i]
for i in range(dcoll.dim)
])
return (
np.cos(source_omega*t)
* actx.np.exp(
-np.dot(center_dist, center_dist)
/ source_width**2))
def main(ctx_factory, dim=2, order=3, visualize=False):
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(
queue,
allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)),
force_device_scalars=True,
)
comm = MPI.COMM_WORLD
num_parts = comm.Get_size()
from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
mesh_dist = MPIMeshDistributor(comm)
nel_1d = 16
if mesh_dist.is_mananger_rank():
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dim,
b=(0.5,)*dim,
nelements_per_axis=(nel_1d,)*dim)
logger.info("%d elements", mesh.nelements)
part_per_element = get_partition_by_pymetis(mesh, num_parts)
local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)
del mesh
else:
local_mesh = mesh_dist.receive_mesh_part()
dcoll = DiscretizationCollection(actx, local_mesh, order=order,
mpi_communicator=comm)
fields = flat_obj_array(
bump(actx, dcoll),
[dcoll.zeros(actx) for i in range(dcoll.dim)]
)
c = 1
dt = 0.45 * estimate_rk4_timestep(actx, dcoll, c)
def rhs(t, w):
return wave_operator(dcoll, c=c, w=w)
if comm.rank == 0:
logger.info("dt = %g", dt)
for _ in range(5):
rhs(0, fields)
def f():
for _ in range(300):
rhs(0, fields)
from time import process_time
queue.finish()
start = process_time()
if 0:
import vmprof
with open("test.prof", "w+b") as fd:
vmprof.enable(fd.fileno())
f()
vmprof.disable()
else:
f()
queue.finish()
end = process_time()
print(f"elapsed: {end-start} s")
return
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dim", default=2, type=int)
parser.add_argument("--order", default=3, type=int)
parser.add_argument("--visualize", action="store_true")
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
main(cl.create_some_context,
dim=args.dim,
order=args.order,
visualize=args.visualize)
# vim: foldmethod=marker
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment