Skip to content

Instantly share code, notes, and snippets.

@ines
Created October 3, 2019 20:37
Show Gist options
  • Save ines/0adc578bffff78de32e706ef987bddde to your computer and use it in GitHub Desktop.
Save ines/0adc578bffff78de32e706ef987bddde to your computer and use it in GitHub Desktop.
Streamlit + Prodigy
"""
Example of a Streamlit app for an interactive Prodigy dataset viewer that also lets you
run simple training experiments for NER and text classification.
Requires the Prodigy annotation tool to be installed: https://prodi.gy
See here for details on Streamlit: https://streamlit.io.
"""
import streamlit as st
from prodigy.components.db import connect
from prodigy.models.ner import EntityRecognizer, merge_spans, guess_batch_size
from prodigy.models.textcat import TextClassifier
from prodigy.util import split_evals
import pandas as pd
import spacy
from spacy import displacy
from spacy.util import filter_spans, minibatch
import random
SPACY_MODEL_NAMES = ["en_core_web_sm"]
EXC_FIELDS = ["meta", "priority", "score"]
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
COLOR_ACCEPT = "#93eaa1"
COLOR_REJECT = "#ff8f8e"
def guess_dataset_type(first_eg):
if "image" in first_eg:
return "image"
if "arc" in first_eg:
return "dep"
if "options" in first_eg or "label" in first_eg:
return "textcat"
if "spans" in first_eg:
return "ner"
return "other"
def get_answer_counts(examples):
result = {"accept": 0, "reject": 0, "ignore": 0}
for eg in examples:
answer = eg.get("answer")
if answer:
result[answer] += 1
return result
def format_label(label, answer="accept"):
# Hack to use different colors for the label (by adding zero-width space)
return f"{label}\u200B" if answer == "reject" else label
st.sidebar.title("Prodigy Data Explorer")
db = connect()
db_sets = db.datasets
placeholder = "Select dataset..."
dataset = st.sidebar.selectbox(f"Datasets ({len(db_sets)})", [placeholder] + db_sets)
if dataset != placeholder:
examples = db.get_dataset(dataset)
st.header(f"{dataset} ({len(examples)})")
if not len(examples):
st.markdown("_Empty dataset._")
else:
counts = get_answer_counts(examples)
st.markdown(", ".join(f"**{c}** {a}" for a, c in counts.items()))
dataset_types = ["ner", "textcat", "dep", "pos", "image", "other"]
guessed_index = dataset_types.index(guess_dataset_type(examples[0]))
set_type = st.sidebar.selectbox("Dataset type", dataset_types, guessed_index)
fields = list(examples[0].keys())
default_fields = [f for f in fields if f[0] != "_" and f not in EXC_FIELDS]
task_fields = st.sidebar.multiselect("Visible fields", fields, default_fields)
st.dataframe(pd.DataFrame(examples).filter(task_fields), height=500)
if set_type in ["ner", "textcat"]:
st.sidebar.header("Viewer options")
purpose = "tokenization & training" if set_type == "ner" else "training"
spacy_model_title = f"spaCy model for {purpose}"
spacy_model = st.sidebar.selectbox(spacy_model_title, SPACY_MODEL_NAMES)
st.sidebar.subheader("Training configuration")
n_iter = st.sidebar.slider("Number of iterations", 1, 100, 5, 1)
dropout = st.sidebar.slider("Dropout rate", 0.0, 1.0, 0.2, 0.05)
eval_split_label = "% of examples held back for evaluation"
eval_split = st.sidebar.slider(eval_split_label, 0.0, 1.0, 0.2, 0.05)
if set_type == "ner":
st.subheader("Named entity viewer")
nlp = spacy.load(spacy_model)
merged_examples = merge_spans(list(examples))
all_labels = set()
for eg in merged_examples:
for span in eg["spans"]:
all_labels.add(span["label"])
colors = {}
for label in all_labels:
colors[label] = COLOR_ACCEPT
colors[format_label(label, "reject")] = COLOR_REJECT
ner_example_i = st.selectbox(
f"Merged examples ({len(merged_examples)})",
range(len(merged_examples)),
format_func=lambda i: merged_examples[int(i)]["text"][:400],
)
ner_example = merged_examples[int(ner_example_i)]
doc = nlp.make_doc(ner_example["text"])
ents = []
for span in ner_example.get("spans", []):
label = format_label(span["label"], span["answer"])
ents.append(doc.char_span(span["start"], span["end"], label=label))
doc.ents = filter_spans(ents)
html = displacy.render(doc, style="ent", options={"colors": colors})
html = html.replace("\n", " ") # Newlines seem to mess with the rendering
st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)
show_ner_example_json = st.checkbox("Show JSON example")
if show_ner_example_json:
st.json(ner_example)
st.subheader("Train a model (experimental)")
no_missing = st.checkbox(
"Data is gold-standard and contains no missing values", False
)
start_blank = st.checkbox("Start with blank NER model", True)
if st.button("🚀 Start training"):
if start_blank:
ner = nlp.create_pipe("ner")
if "ner" in nlp.pipe_names:
nlp.replace_pipe("ner", ner)
else:
nlp.add_pipe(ner)
ner.begin_training([])
else:
ner = nlp.get_pipe("ner")
for label in all_labels:
ner.add_label(label)
random.shuffle(examples)
train_examples, evals, eval_split = split_evals(
merged_examples, eval_split
)
st.success(
f"✅ Using **{len(train_examples)}** training examples "
f"and **{len(evals)}** evaluation examples with "
f"**{len(all_labels)}** label(s)"
)
annot_model = EntityRecognizer(
nlp, label=all_labels, no_missing=no_missing
)
batch_size = guess_batch_size(len(train_examples))
baseline = annot_model.evaluate(evals)
st.info(
f"ℹ️ **Baseline**\n**{baseline['right']:.0f}** right "
f"entities, **{baseline['wrong']:.0f}** wrong entities, "
f"**{baseline['unk']:.0f}** unkown entities, "
f"**{baseline['ents']:.0f}** total predicted, "
f"**{baseline['acc']:.2f}** accuracy"
)
progress = st.progress(0)
results = []
result_table = st.empty()
best_acc = 0.0
for i in range(n_iter):
random.shuffle(train_examples)
losses = annot_model.batch_train(
train_examples,
batch_size=batch_size,
drop=dropout,
beam_width=16,
)
stats = annot_model.evaluate(evals)
stats = {
"Right": stats["right"],
"Wrong": stats["wrong"],
"Unknown": stats["unk"],
"Predicted Ents": stats["ents"],
"Loss": losses["ner"],
"Accuracy": round(stats["acc"], 3),
}
best_acc = (
stats["Accuracy"] if stats["Accuracy"] > best_acc else best_acc
)
def highlight(v):
is_best = v != 0 and v == best_acc
return f"background: {'yellow' if is_best else 'white'}"
results.append(stats)
results_df = pd.DataFrame(results, dtype="float")
result_table.dataframe(results_df.style.applymap(highlight))
progress.progress(int((i + 1) / n_iter * 100))
elif set_type == "textcat":
st.subheader("Train a model (experimental)")
exclusive = st.checkbox("Labels are mututally exclusive", False)
if st.button("🚀 Start training"):
nlp = spacy.load(spacy_model)
examples = list(examples)
all_labels = set()
for eg in examples:
all_labels.update(eg.get("accelt", []))
if "label" in eg:
all_labels.add(eg["label"])
textcat = nlp.create_pipe("textcat")
for label in all_labels:
textcat.add_label(label)
textcat.begin_training()
nlp.add_pipe(textcat)
random.shuffle(examples)
train_examples, evals, eval_split = split_evals(examples, eval_split)
st.success(
f"✅ Using **{len(train_examples)}** training examples "
f"and **{len(evals)}** evaluation examples with "
f"**{len(all_labels)}** label(s)"
)
annot_model = TextClassifier(
nlp,
all_labels,
low_data=len(train_examples) < 1000,
exclusive_classes=exclusive,
)
progress = st.progress(0)
results = []
result_table = st.empty()
best_acc = 0.0
for i in range(n_iter):
loss = 0.0
random.shuffle(train_examples)
for batch in minibatch(train_examples, size=10):
batch = list(batch)
loss += annot_model.update(batch, revise=False, drop=dropout)
with nlp.use_params(annot_model.optimizer.averages):
stats = annot_model.evaluate(evals)
stats = {
"Loss": loss,
"F-Score": stats["fscore"],
"Accuracy": round(stats["accuracy"], 3),
}
best_acc = (
stats["Accuracy"] if stats["Accuracy"] > best_acc else best_acc
)
def highlight(v):
is_best = v != 0 and v == best_acc
return f"background: {'yellow' if is_best else 'white'}"
results.append(stats)
results_df = pd.DataFrame(results, dtype="float").round(3)
result_table.dataframe(results_df.style.applymap(highlight))
progress.progress(int((i + 1) / n_iter * 100))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment