Adaptive Piecewise Linear Approximation of Time Series [HANA, R, UI5]
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
HANA&R adaptive PLA |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
index | value | |
---|---|---|
1 | 1.375860 | |
2 | 1.375690 | |
3 | 1.375360 | |
4 | 1.375540 | |
5 | 1.375500 | |
6 | 1.375980 | |
7 | 1.375680 | |
8 | 1.375990 | |
9 | 1.375990 | |
10 | 1.375860 | |
11 | 1.376000 | |
12 | 1.375310 | |
13 | 1.374130 | |
14 | 1.375640 | |
15 | 1.375610 | |
16 | 1.375140 | |
17 | 1.375030 | |
18 | 1.375390 | |
19 | 1.375610 | |
20 | 1.375620 | |
21 | 1.375620 | |
22 | 1.376100 | |
23 | 1.376040 | |
24 | 1.375750 | |
25 | 1.375860 | |
26 | 1.375020 | |
27 | 1.374950 | |
28 | 1.375010 | |
29 | 1.375090 | |
30 | 1.375440 | |
31 | 1.375310 | |
32 | 1.375260 | |
33 | 1.375550 | |
34 | 1.375370 | |
35 | 1.375320 | |
36 | 1.375330 | |
37 | 1.375330 | |
38 | 1.375400 | |
39 | 1.375280 | |
40 | 1.375280 | |
41 | 1.375350 | |
42 | 1.375400 | |
43 | 1.375350 | |
44 | 1.375490 | |
45 | 1.375380 | |
46 | 1.375560 | |
47 | 1.375700 | |
48 | 1.375530 | |
49 | 1.375630 | |
50 | 1.375560 | |
51 | 1.375430 | |
52 | 1.376140 | |
53 | 1.375790 | |
54 | 1.376460 | |
55 | 1.375990 | |
56 | 1.376540 | |
57 | 1.376460 | |
58 | 1.376170 | |
59 | 1.376090 | |
60 | 1.376240 | |
61 | 1.376460 | |
62 | 1.376700 | |
63 | 1.376830 | |
64 | 1.376850 | |
65 | 1.376620 | |
66 | 1.376680 | |
67 | 1.376700 | |
68 | 1.376680 | |
69 | 1.376730 | |
70 | 1.377030 | |
71 | 1.376880 | |
72 | 1.377020 | |
73 | 1.377210 | |
74 | 1.377050 | |
75 | 1.377010 | |
76 | 1.376800 | |
77 | 1.377120 | |
78 | 1.376800 | |
79 | 1.376500 | |
80 | 1.376450 | |
81 | 1.376440 | |
82 | 1.376450 | |
83 | 1.376440 | |
84 | 1.376440 | |
85 | 1.376560 | |
86 | 1.376520 | |
87 | 1.376490 | |
88 | 1.376430 | |
89 | 1.376610 | |
90 | 1.376990 | |
91 | 1.376680 | |
92 | 1.377070 | |
93 | 1.376790 | |
94 | 1.376800 | |
95 | 1.376710 | |
96 | 1.376480 | |
97 | 1.376580 | |
98 | 1.376600 | |
99 | 1.376600 | |
100 | 1.376500 | |
101 | 1.376480 | |
102 | 1.376470 | |
103 | 1.376460 | |
104 | 1.376360 | |
105 | 1.376380 | |
106 | 1.376340 | |
107 | 1.376330 | |
108 | 1.376320 | |
109 | 1.376330 | |
110 | 1.376320 | |
111 | 1.376420 | |
112 | 1.376550 | |
113 | 1.376480 | |
114 | 1.376520 | |
115 | 1.376350 | |
116 | 1.376520 | |
117 | 1.376830 | |
118 | 1.376830 | |
119 | 1.376830 | |
120 | 1.376780 | |
121 | 1.376520 | |
122 | 1.376520 | |
123 | 1.376500 | |
124 | 1.376550 | |
125 | 1.376560 | |
126 | 1.376560 | |
127 | 1.376590 | |
128 | 1.376610 | |
129 | 1.376350 | |
130 | 1.376380 | |
131 | 1.376350 | |
132 | 1.376240 | |
133 | 1.376210 | |
134 | 1.376270 | |
135 | 1.376520 | |
136 | 1.376260 | |
137 | 1.376280 | |
138 | 1.376300 | |
139 | 1.376300 | |
140 | 1.376170 | |
141 | 1.376120 | |
142 | 1.376090 | |
143 | 1.376000 | |
144 | 1.375960 | |
145 | 1.375980 | |
146 | 1.375840 | |
147 | 1.375900 | |
148 | 1.375900 | |
149 | 1.375920 | |
150 | 1.375980 | |
151 | 1.375940 | |
152 | 1.375980 | |
153 | 1.375950 | |
154 | 1.375990 | |
155 | 1.376030 | |
156 | 1.376030 | |
157 | 1.376010 | |
158 | 1.376080 | |
159 | 1.376170 | |
160 | 1.376180 | |
161 | 1.376210 | |
162 | 1.376120 | |
163 | 1.376050 | |
164 | 1.375990 | |
165 | 1.376170 | |
166 | 1.376180 | |
167 | 1.376100 | |
168 | 1.376420 | |
169 | 1.376130 | |
170 | 1.376140 | |
171 | 1.375860 | |
172 | 1.375820 | |
173 | 1.375810 | |
174 | 1.375890 | |
175 | 1.376010 | |
176 | 1.375980 | |
177 | 1.375990 | |
178 | 1.375980 | |
179 | 1.376030 | |
180 | 1.376040 | |
181 | 1.376000 | |
182 | 1.375860 | |
183 | 1.375760 | |
184 | 1.375770 | |
185 | 1.375790 | |
186 | 1.375730 | |
187 | 1.375740 | |
188 | 1.375750 | |
189 | 1.375740 | |
190 | 1.375650 | |
191 | 1.375660 | |
192 | 1.375600 | |
193 | 1.375600 | |
194 | 1.375600 | |
195 | 1.375610 | |
196 | 1.375620 | |
197 | 1.375520 | |
198 | 1.375540 | |
199 | 1.375550 | |
200 | 1.375290 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
toSlopes <- function(ts){ | |
slopes <- diff(ts); | |
indexes <- 0:(length(slopes)-1); | |
aux <- slopes*indexes; | |
offset <- ts[1:length(slopes)] - aux; | |
lngth <- rep(1,length(slopes)); | |
res <- data.frame(matrix(c(slopes, offset, indexes, lngth), ncol = 4)); | |
colnames(res) <- c("a", "b", "startp", "runlength"); | |
return(res); | |
}; | |
fValue <- function(segs, x){ | |
return(segs[1,"a"]*x + segs[1,"b"]); | |
}; | |
merge <- function(segs){ | |
slope <- weighted.mean(segs[,"a"], segs[,"runlength"]); | |
start <- segs[1, "startp"]; | |
length <- sum(segs[, "runlength"]); | |
if ( segs[1,"a"] == segs[2,"a"] ){ | |
offset <- segs[1,"b"]; | |
} else { | |
offset <- fValue(segs[1,], segs[1, "startp"]) - (slope * segs[1, "startp"]) ; | |
} | |
res <- data.frame( slope, offset, start, length); | |
colnames(res) <- c("a", "b", "startp", "runlength"); | |
return(res); | |
}; | |
segdif <- function(segs, x1, x2){ | |
a1 <- segs[1,"a"]; | |
a2 <- segs[2,"a"]; | |
b1 <- segs[1,"b"]; | |
b2 <- segs[2,"b"]; | |
out <- (a1 - a2)*(x2*x2 - x1*x1)/2 + (b1 - b2)*(x2 - x1); | |
return(out); | |
}; | |
mergeCost <- function(segs){ | |
merged <- merge(segs); | |
start1 <- segs[1, "startp"]; | |
end1 <- start1 + segs[1,"runlength"]; | |
cost <- segdif(rbind(merged, segs[1,]), start1, end1); | |
start2 <- segs[2, "startp"]; | |
end2 <- start2 + segs[2,"runlength"]; | |
cost <- cost + segdif(rbind(merged, segs[2,]), start2, end2); | |
return(abs(cost)); | |
}; | |
costVector <- function(segs){ | |
start <- 0; | |
cost <- NULL; | |
## determine merge cost for each pair of segments | |
for (i in 1:(length(segs[,1])-1)) | |
{ | |
cost[i] <- mergeCost(segs[i:(i+1),]); | |
} | |
return(cost); | |
}; | |
bottomUp <- function(segs, minIndex){ | |
## now adjust the data | |
out <- segs; | |
out[minIndex,] <- merge(out[minIndex:(minIndex+1),]); | |
out <- out[-c(minIndex+1),]; | |
return(out); | |
}; | |
bottomUpCost <- function(segs, cost, minIndex){ | |
## now adjust the data | |
out <- cost; | |
if (minIndex < length(segs[,"a"])) | |
{ | |
out <- out[-c(minIndex+1)]; # eliminate cost for entry that is being deleted | |
out[minIndex] <- mergeCost(segs[minIndex:(minIndex+1),]); #recalculate cost after merge | |
} | |
else ## special case when we are eliminating the last entry | |
{ | |
out <- out[-c(minIndex)]; # eliminate last cost entry | |
} | |
return(out); | |
}; | |
segment <- function(ts, segments){ | |
slopes <- toSlopes(ts); | |
cost <- costVector(slopes); | |
while( length(slopes[,"a"]) > segments ){ | |
## find minimum merge cost | |
minIndex <- which.min(cost); | |
## now adjust the data | |
slopes <- bottomUp(slopes, minIndex); | |
cost <- bottomUpCost(slopes, cost, minIndex); | |
} | |
return(slopes); | |
} | |
#### helper functions for display #### | |
segPlot <- function(segs){ | |
x <- 0; | |
vec <- c(x,fValue(segs[1,],x)); | |
for (i in 1:length(segs[,"a"])){ | |
x <- x + segs[i,"runlength"]; | |
vec <- rbind(vec, c(x,fValue(segs[i,],x))); | |
} | |
return(vec); | |
}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
table.schemaName = "IONESCUV"; | |
table.tableType = COLUMNSTORE; // ROWSTORE is an alternative value | |
table.columns = | |
[ | |
{name = "index"; sqlType = INTEGER; }, | |
{name = "val"; sqlType = DECIMAL; precision = 6; scale = 5; } | |
]; | |
table.primaryKey.pkcolumns = ["index"]; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
sap.ui.controller("r_pal_sample.view.Master", { | |
onInit : function() { | |
//Raw Data plot using Viz Line Chart | |
var oDatasetRaw = new sap.viz.ui5.data.FlattenedDataset({ | |
dimensions : [ { | |
axis : 1, | |
name : 'index', | |
value : '{index}' | |
} | |
], | |
measures : [ | |
{ | |
name : 'val', | |
value : '{val}' | |
} ], | |
data : { | |
path : "/rawData" | |
} | |
}); | |
var oVizFrameLine = this.getView().byId("idVizFrameLine"); | |
oVizFrameLine.setDataset(oDatasetRaw); | |
//Segementation plot using VizFrame with 'timeseries_line' visualization | |
var oVizFrame = this.getView().byId("idVizFrameCombined"); | |
oVizFrame.setVizType('timeseries_line'); | |
oDatasetVizFrame = new sap.viz.ui5.data.FlattenedDataset({ | |
dimensions : [ { | |
name : 'index', | |
value : '{INDEX}', | |
dataType:'date' | |
} ], | |
measures : [ { | |
name : 'val', | |
value : '{VAL}' | |
} | |
} ], | |
data : { | |
path : "/segmentation(granularity=5)/Results" | |
} | |
}); | |
oVizFrame.setVizProperties({ | |
general: { | |
layout: { | |
padding: 0.04 | |
} | |
}, | |
valueAxis: { | |
visible: false, | |
title: { | |
visible: false | |
}, | |
label: { | |
formatString: 'u' | |
} | |
}, | |
timeAxis: { | |
visible: false, | |
title: { | |
visible: false | |
}, | |
levelConfig: { | |
"year": { | |
row: 2 | |
} | |
} | |
}, | |
plotArea: { | |
dataLabel: { | |
visible: false | |
} | |
}, | |
legend: { | |
visible: false, | |
title: { | |
visible: false | |
} | |
}, | |
title: { | |
visible: false, | |
} | |
}); | |
oVizFrame.setDataset(oDatasetVizFrame); | |
feedValueAxis = new sap.viz.ui5.controls.common.feeds.FeedItem({ | |
'uid': "valueAxis", | |
'type': "Measure", | |
'values': ["val"] | |
}); | |
oVizFrame.addFeed(feedValueAxis); | |
feedTimeAxis = new sap.viz.ui5.controls.common.feeds.FeedItem({ | |
'uid': "timeAxis", | |
'type': "Dimension", | |
'values': ["index"] | |
}); | |
oVizFrame.addFeed(feedTimeAxis); | |
}, | |
onSegChange : function(event) { | |
var newGranularity = Math.round(event.getParameters().value); | |
oDatasetVizFrame.bindData({ | |
path : "/segmentation(granularity=" + newGranularity + ")/Results" | |
}); | |
} | |
}); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<core:View controllerName="r_pal_sample.view.Master" xmlns:com="sap.ui.commons" xmlns:core="sap.ui.core" | |
xmlns:html="http://www.w3.org/1999/xhtml" xmlns:l="sap.ui.layout" xmlns:viz="sap.viz.ui5" xmlns="sap.m"> | |
<Page id="TextPage" title="Segmentation"> | |
<l:HorizontalLayout> | |
<viz:Line id="idVizFrameLine" width="600px" height="500px"> | |
<viz:legend> | |
<viz:types.legend.Common visible="false"/> | |
</viz:legend> | |
<viz:title> | |
<viz:types.Title text="Original Data" visible="true"/> | |
</viz:title> | |
</viz:Line> | |
<com:Slider change="onSegChange" height="400px" max="99" min="1" stepLabels="true" vertical="true" width="50px"/> | |
<viz:controls.VizFrame id="idVizFrameCombined" uiConfig="{applicationSet:'fiori'}" width="600px" height="500px"/> | |
</l:HorizontalLayout> | |
</Page> | |
</core:View> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment