Skip to content

Instantly share code, notes, and snippets.

@itdaniher
Created November 20, 2017 20:16
Show Gist options
  • Save itdaniher/d88585a130d77fa250ab04028b28eda3 to your computer and use it in GitHub Desktop.
Save itdaniher/d88585a130d77fa250ab04028b28eda3 to your computer and use it in GitHub Desktop.
min-char-rnn.py for python3
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
## add comments by weixsong
## reference page [The Unreasonable Effectiveness of Recurrent Neural Networks](http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
## this is a 3 layers neuron network.
## input layer: one hot vector, dim: vocab * 1
## hidden layer: LSTM, hidden vector: hidden_size * 1
## output layer: Softmax, vocab * 1, the probabilities distribution of each character
import numpy as np
import sys
# data I/O
data = open(sys.argv[1], 'r').read() # should be simple plain text file
# use set() to count the vacab size
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
print(('data has %d characters, %d unique.' % (data_size, vocab_size)))
# dictionary to convert char to idx, idx to char
char_to_ix = { ch:i for i,ch in enumerate(chars) }
ix_to_char = { i:ch for i,ch in enumerate(chars) }
# hyperparameters
hidden_size = 100 # size of hidden layer of neurons
seq_length = 25 # number of steps to unroll the RNN for
learning_rate = 1e-1
# model parameters
## RNN/LSTM
## this is not LSTM, is the simple basic RNN
## # update the hidden state
## self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
## # compute the output vector
## y = np.dot(self.W_hy, self.h)
Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden
Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden
Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
bh = np.zeros((hidden_size, 1)) # hidden bias
by = np.zeros((vocab_size, 1)) # output bias
## compute loss, derivative
## cross-entropy loss is used
## actually, here the author use cross-entropy as error,
## but in the backpropagation the author use sum of squared error (Quadratic cost) to do back propagation.
## be careful about this trick.
## this is because the output layer is a linear layer.
## TRICK: Using the quadratic cost when we have linear neurons in the output layer, z[i] = a[i]
def lossFun(inputs, targets, hprev):
"""
inputs,targets are both list of integers.
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state
"""
xs, hs, ys, ps = {}, {}, {}, {}
## record each hidden state of
hs[-1] = np.copy(hprev)
loss = 0
# forward pass for each training data point
for t in range(len(inputs)):
xs[t] = np.zeros((vocab_size, 1)) # encode in 1-of-k representation
xs[t][inputs[t]] = 1
## hidden state, using previous hidden state hs[t-1]
hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh)
## unnormalized log probabilities for next chars
ys[t] = np.dot(Why, hs[t]) + by
## probabilities for next chars, softmax
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))
## softmax (cross-entropy loss)
loss += -np.log(ps[t][targets[t], 0])
# backward pass: compute gradients going backwards
dWxh, dWhh, dWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[0])
for t in reversed(range(len(inputs))):
## compute derivative of error w.r.t the output probabilites
## dE/dy[j] = y[j] - t[j]
dy = np.copy(ps[t])
dy[targets[t]] -= 1 # backprop into y
## output layer doesnot use activation function, so no need to compute the derivative of error with regard to the net input
## of output layer.
## then, we could directly compute the derivative of error with regard to the weight between hidden layer and output layer.
## dE/dy[j]*dy[j]/dWhy[j,k] = dE/dy[j] * h[k]
dWhy += np.dot(dy, hs[t].T)
dby += dy
## backprop into h
## derivative of error with regard to the output of hidden layer
## derivative of H, come from output layer y and also come from H(t+1), the next time H
dh = np.dot(Why.T, dy) + dhnext
## backprop through tanh nonlinearity
## derivative of error with regard to the input of hidden layer
## dtanh(x)/dx = 1 - tanh(x) * tanh(x)
dhraw = (1 - hs[t] * hs[t]) * dh
dbh += dhraw
## derivative of the error with regard to the weight between input layer and hidden layer
dWxh += np.dot(dhraw, xs[t].T)
dWhh += np.dot(dhraw, hs[t-1].T)
## derivative of the error with regard to H(t+1)
## or derivative of the error of H(t-1) with regard to H(t)
dhnext = np.dot(Whh.T, dhraw)
for dparam in [dWxh, dWhh, dWhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
return loss, dWxh, dWhh, dWhy, dbh, dby, hs[len(inputs)-1]
## given a hidden RNN state, and a input char id, predict the coming n chars
def sample(h, seed_ix, n):
"""
sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
"""
## a one-hot vector
x = np.zeros((vocab_size, 1))
x[seed_ix] = 1
ixes = []
for t in range(n):
## self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh)
## y = np.dot(self.W_hy, self.h)
y = np.dot(Why, h) + by
## softmax
p = np.exp(y) / np.sum(np.exp(y))
## sample according to probability distribution
ix = np.random.choice(list(range(vocab_size)), p=p.ravel())
## update input x
## use the new sampled result as last input, then predict next char again.
x = np.zeros((vocab_size, 1))
x[ix] = 1
ixes.append(ix)
return ixes
## iterator counter
n = 0
## data pointer
p = 0
mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad
smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0
## main loop
while True:
# prepare inputs (we're sweeping from left to right in steps seq_length long)
if p + seq_length + 1 >= len(data) or n == 0:
# reset RNN memory
## hprev is the hiddden state of RNN
hprev = np.zeros((hidden_size, 1))
# go from start of data
p = 0
inputs = [char_to_ix[ch] for ch in data[p : p + seq_length]]
targets = [char_to_ix[ch] for ch in data[p + 1 : p + seq_length + 1]]
# sample from the model now and then
if n % 100 == 0:
sample_ix = sample(hprev, inputs[0], 2000)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print('---- sample -----')
print('----\n %s \n----' % (txt, ))
# forward seq_length characters through the net and fetch gradient
loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
## author using Adagrad(a kind of gradient descent)
smooth_loss = smooth_loss * 0.999 + loss * 0.001
if n % 100 == 0:
print('iter %d, loss: %f' % (n, smooth_loss)) # print progress
# perform parameter update with Adagrad
## parameter update for Adagrad is different from gradient descent parameter update
## need to learn what is Adagrad exactly is.
## seems using weight matrix, derivative of weight matrix and a memory matrix, update memory matrix each iteration
## memory is the accumulation of each squared derivatives in each iteration.
## mem += dparam * dparam
for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
[dWxh, dWhh, dWhy, dbh, dby],
[mWxh, mWhh, mWhy, mbh, mby]):
mem += dparam * dparam
## learning_rate is adjusted by mem, if mem is getting bigger, then learning_rate will be small
## gradient descent of Adagrad
param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update
p += seq_length # move data pointer
n += 1 # iteration counter
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment