import numpy as np | |
n_rolls = 10000000 | |
n_sides = 20 | |
min_dice_value = 8 | |
rolls_1 = np.random.randint(n_sides, size=(n_rolls, 2)) + 1 | |
rolls_2 = np.random.randint(n_sides, size=(n_rolls, 2)) + 1 | |
print('-' * 30) | |
print('advantage of disadvantages') | |
print("simulation:", np.mean(np.maximum(rolls_1.min(axis=1), rolls_2.min(axis=1)) | |
>= min_dice_value)) | |
print('-' * 30) | |
print('disadvantage of advantages') | |
print("simulation:", np.mean(np.minimum(rolls_1.max(axis=1), rolls_2.max(axis=1)) | |
>= min_dice_value)) | |
print('-' * 30) | |
print('single roll') | |
print("simulation:", np.mean(rolls_1[:, 0] >= min_dice_value)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment