This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#version 450 | |
#pragma shader_stage(compute) | |
layout(local_size_x = 8, local_size_y = 4, local_size_z = 1) in; | |
layout(set = 0, binding = 0) buffer readonly MatrixA { | |
int[1<<20] matrix_a; | |
}; | |
layout(set = 0, binding = 1) buffer readonly MatrixB { | |
int[1<<20] matrix_b; | |
}; | |
layout(set = 0, binding = 2) buffer writeonly MatrixC { | |
int[1<<20] matrix_c; | |
}; | |
void main() { | |
const uint row = gl_GlobalInvocationID.x; | |
const uint col = gl_GlobalInvocationID.y; | |
if(row >= 1024 || col >= 1024) { | |
return; | |
} | |
int sum = 0; | |
for(uint i = 0; i < 1024; i++) { | |
sum += matrix_a[row * 1024 + i] * matrix_b[i * 1024 + col]; | |
} | |
matrix_c[row * 1024 + col] = sum; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
extern crate rand; | |
extern crate vulkano; | |
extern crate vulkano_shaders; | |
use rand::rngs::StdRng; | |
use rand::{Rng, SeedableRng}; | |
use std::sync::Arc; | |
use std::time::Instant; | |
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, ImmutableBuffer}; | |
use vulkano::command_buffer::{AutoCommandBufferBuilder, CommandBufferUsage, PrimaryCommandBuffer}; | |
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet; | |
use vulkano::device::{Device, DeviceExtensions, Features}; | |
use vulkano::instance::PhysicalDevice; | |
use vulkano::instance::{Instance, InstanceExtensions}; | |
use vulkano::pipeline::{ComputePipeline, ComputePipelineAbstract}; | |
use vulkano::sync::GpuFuture; | |
use vulkano::Version; | |
const N: u32 = 1 << 20; | |
fn main() { | |
let instance = Instance::new(None, Version::V1_2, &InstanceExtensions::none(), None) | |
.expect("failed to create instance !"); | |
let physical_device = PhysicalDevice::enumerate(&instance) | |
.next() | |
.expect("failed to enumerate physical devices"); | |
println!( | |
"Device: {}\nVulkan API: {}", | |
physical_device.properties().device_name.as_ref().unwrap(), | |
physical_device.api_version() | |
); | |
for i in physical_device.queue_families() { | |
println!( | |
"Queue Count: {}\tCompute: {}\tGraphics: {}", | |
i.queues_count(), | |
i.supports_compute(), | |
i.supports_graphics() | |
); | |
} | |
let queue_family = physical_device | |
.queue_families() | |
.find(|&v| v.supports_compute()) | |
.expect("failed to find compute supported queue family"); | |
let mut ext = DeviceExtensions::none(); | |
ext.khr_storage_buffer_storage_class = true; | |
let (logical_device, mut queues) = Device::new( | |
physical_device, | |
&Features::none(), | |
&ext, | |
[(queue_family, 0.5)].iter().cloned(), | |
) | |
.expect("failed to create logical logical_device"); | |
let queue = queues.next().expect("failed to find associated queue"); | |
let matrix_a = generate_square_matrix(Some(13)); | |
let matrix_b = generate_square_matrix(Some(17)); | |
let matrix_c = generate_square_matrix(None); | |
// Matrix A --- stored in GPU accessible memory, CPU can't access it | |
let (matrix_a_buf, _) = ImmutableBuffer::from_iter(matrix_a, BufferUsage::all(), queue.clone()) | |
.expect("failed to create uniform buffer"); | |
// Matrix B --- stored in GPU accessible memory, CPU can't access it | |
let (matrix_b_buf, _) = ImmutableBuffer::from_iter(matrix_b, BufferUsage::all(), queue.clone()) | |
.expect("failed to create uniform buffer"); | |
// Matrix C --- resulting matrix can be accessed by both CPU, GPU | |
let matrix_c_buf = | |
CpuAccessibleBuffer::from_iter(logical_device.clone(), BufferUsage::all(), false, matrix_c) | |
.expect("failed to create storage buffer"); | |
// loading compute shader, including shader compilation | |
// abstracted with macro! | |
let shader = cs::Shader::load(logical_device.clone()).unwrap(); | |
// preparing compute pipeline | |
let compute_pipeline = Arc::new( | |
ComputePipeline::new( | |
logical_device.clone(), | |
&shader.main_entry_point(), | |
&(), | |
None, | |
) | |
.unwrap(), | |
); | |
// adding descriptors as per layout, into compute pipeline | |
let layout = compute_pipeline.layout().descriptor_set_layout(0).unwrap(); | |
let set = Arc::new( | |
PersistentDescriptorSet::start(layout.clone()) | |
.add_buffer(matrix_a_buf.clone()) | |
.unwrap() | |
.add_buffer(matrix_b_buf.clone()) | |
.unwrap() | |
.add_buffer(matrix_c_buf.clone()) | |
.unwrap() | |
.build() | |
.unwrap(), | |
); | |
// create command buffer & start recording commands in it | |
let mut builder = AutoCommandBufferBuilder::primary( | |
logical_device.clone(), | |
queue.family(), | |
CommandBufferUsage::OneTimeSubmit, | |
) | |
.unwrap(); | |
// only single command recorded in command buffer | |
builder | |
.dispatch( | |
[1024 / 8, 1024 / 4, 1], | |
compute_pipeline.clone(), | |
set.clone(), | |
(), | |
std::iter::empty(), | |
) | |
.unwrap(); | |
// ending command recording | |
let command_buffer = builder.build().unwrap(); | |
// Computing Matrix Multiplication on GPU | |
let start = Instant::now(); | |
let finished = command_buffer.execute(queue.clone()).unwrap(); | |
finished | |
.then_signal_fence_and_flush() | |
.unwrap() | |
.wait(None) | |
.unwrap(); | |
let gpu_tm = start.elapsed(); | |
println!("GPU matrix multiply: {:?}", gpu_tm); | |
let r_matrix_a = generate_square_matrix(Some(13)).collect::<Vec<i32>>(); | |
let r_matrix_b = generate_square_matrix(Some(17)).collect::<Vec<i32>>(); | |
// reading GPU-computed matrix multiplication result | |
let gpu_result = matrix_c_buf.read().unwrap(); | |
// Computing Matrix Multiplication on CPU, and asserting ! | |
let start = Instant::now(); | |
for i in 0..1024 { | |
for j in 0..1024 { | |
let mut sum = 0i32; | |
for k in 0..1024 { | |
sum += r_matrix_a[i * 1024 + k] * r_matrix_b[k * 1024 + j]; | |
} | |
assert_eq!(sum, gpu_result[i * 1024 + j]); | |
} | |
} | |
println!( | |
"CPU matrix multiply: {:?}\nSpeed Up: {}", | |
start.elapsed(), | |
start.elapsed().as_nanos() / gpu_tm.as_nanos() | |
); | |
} | |
// reproducible random matrix generator, as single dimensional iterator | |
fn generate_square_matrix(seed: Option<u64>) -> Box<dyn std::iter::ExactSizeIterator<Item = i32>> { | |
match seed { | |
Some(seed) => { | |
let mut rng = StdRng::seed_from_u64(seed); | |
Box::new((0..N).map(move |_| rng.gen::<i32>())) | |
} | |
None => Box::new((0..N).map(|_| 0)), | |
} | |
} | |
mod cs { | |
// does shader compilation | |
vulkano_shaders::shader! { | |
ty: "compute", | |
path: "./matrix_multiply.glsl", | |
vulkan_version: "1.2", | |
} | |
} |
Comparation is not fair, CPU is doing calculation in single thread. Dot product those two arrays (that is more than shader does), using ndarray
takes 275 micro seconds on 16 vCore CPU.
Using device: Radeon RX 590 Series (type: DiscreteGpu). API version: 1.3.209
GPU matrix multiply: 28.4929ms
CPU matrix multiply: 548.6Β΅s <-- dot product using ndarray
Speed Up: 0x
Anyhow, example is nice :) TNX!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks @seddonm1