Skip to content

Instantly share code, notes, and snippets.

@iursevla
Created March 14, 2017 11:09
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save iursevla/90b7e35b04cbcad90e12744a20b159fd to your computer and use it in GitHub Desktop.
Save iursevla/90b7e35b04cbcad90e12744a20b159fd to your computer and use it in GitHub Desktop.
rtree
/**
* Exports a `PolygonLookup` constructor, which constructs a data-structure for
* quickly finding the polygon that a point intersects in a (potentially very
* large) set.
*/
var pointInPolygon = function (point, vs) {
// ray-casting algorithm based on
// http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
var x = point[0], y = point[1];
var inside = false;
for (var i = 0, j = vs.length - 1; i < vs.length; j = i++) {
var xi = vs[i][0], yi = vs[i][1];
var xj = vs[j][0], yj = vs[j][1];
var intersect = ((yi > y) != (yj > y))
&& (x < (xj - xi) * (y - yi) / (yj - yi) + xi);
if (intersect) inside = !inside;
}
return inside;
};
/**
* @property {rbush} rtree A spatial index for `this.polygons`.
* @property {object} polgons A GeoJSON feature collection.
*
* @param {object} [featureCollection] An optional GeoJSON feature collection
* to pass to `loadFeatureCollection()`.
*/
function PolygonLookup( featureCollection ){
this.search = function search( x, y ){
var bboxes = this.rtree.search( [ x, y, x, y ] );
var pt = [ x, y ];
for( var ind = 0; ind < bboxes.length; ind++ ){
var polyObj = this.polygons[ bboxes[ ind ].polyId ];
var polyCoords = polyObj.geometry.coordinates[ 0 ];
if( pointInPolygon( pt, polyCoords ) ){
var inHole = false;
for( var subPolyInd = 1; subPolyInd < polyObj.geometry.coordinates.length; subPolyInd++ ){
if( pointInPolygon( pt, polyObj.geometry.coordinates[ subPolyInd ] ) ){
inHole = true;
break;
}
}
if( !inHole ){
return polyObj;
}
}
}
};
this.loadFeatureCollection = function loadFeatureCollection( collection ){
var bboxes = [];
var polygons = [];
var polyId = 0;
function getBoundingBox( poly ){
var firstPt = poly[ 0 ];
var bbox = [
firstPt[ 0 ], firstPt[ 1 ],
firstPt[ 0 ], firstPt[ 1 ]
];
for( var ind = 1; ind < poly.length; ind++ ){
var pt = poly[ ind ];
var x = pt[ 0 ];
if( x < bbox[ 0 ] ){
bbox[ 0 ] = x;
}
else if( x > bbox[ 2 ] ){
bbox[ 2 ] = x;
}
var y = pt[ 1 ];
if( y < bbox[ 1 ] ){
bbox[ 1 ] = y;
}
else if( y > bbox[ 3 ] ){
bbox[ 3 ] = y;
}
}
return bbox;
}
function indexPolygon( poly ){
polygons.push(poly);
var bbox = getBoundingBox( poly.geometry.coordinates[ 0 ] );
bbox.polyId = polyId++;
bboxes.push(bbox);
}
function indexFeature( poly ){
if( poly.geometry.coordinates[ 0 ] !== undefined &&
poly.geometry.coordinates[ 0 ].length > 0){
switch( poly.geometry.type ){
case 'Polygon':
indexPolygon( poly );
break;
case 'MultiPolygon':
var childPolys = poly.geometry.coordinates;
for( var ind = 0; ind < childPolys.length; ind++ ){
var childPoly = {
type: 'Feature',
properties: poly.properties,
geometry: {
type: 'Polygon',
coordinates: childPolys[ ind ]
}
};
indexPolygon( childPoly );
}
break;
}
}
}
var rBush = (function rbush() {
this.RBush = function(maxEntries, format) {
// jshint newcap: false, validthis: true
if (!(this instanceof RBush)) return new RBush(maxEntries, format);
// max entries in a node is 9 by default; min node fill is 40% for best performance
this._maxEntries = Math.max(4, maxEntries || 9);
this._minEntries = Math.max(2, Math.ceil(this._maxEntries * 0.4));
if (format) {
this._initFormat(format);
}
this.clear();
}
RBush.prototype = {
all: function () {
return this._all(this.data, []);
},
search: function (bbox) {
var node = this.data,
result = [],
toBBox = this.toBBox;
if (!intersects(bbox, node.bbox)) return result;
var nodesToSearch = [],
i, len, child, childBBox;
while (node) {
for (i = 0, len = node.children.length; i < len; i++) {
child = node.children[i];
childBBox = node.leaf ? toBBox(child) : child.bbox;
if (intersects(bbox, childBBox)) {
if (node.leaf) result.push(child);
else if (contains(bbox, childBBox)) this._all(child, result);
else nodesToSearch.push(child);
}
}
node = nodesToSearch.pop();
}
return result;
},
load: function (data) {
if (!(data && data.length)) return this;
if (data.length < this._minEntries) {
for (var i = 0, len = data.length; i < len; i++) {
this.insert(data[i]);
}
return this;
}
// recursively build the tree with the given data from stratch using OMT algorithm
var node = this._build(data.slice(), 0, data.length - 1, 0);
if (!this.data.children.length) {
// save as is if tree is empty
this.data = node;
} else if (this.data.height === node.height) {
// split root if trees have the same height
this._splitRoot(this.data, node);
} else {
if (this.data.height < node.height) {
// swap trees if inserted one is bigger
var tmpNode = this.data;
this.data = node;
node = tmpNode;
}
// insert the small tree into the large tree at appropriate level
this._insert(node, this.data.height - node.height - 1, true);
}
return this;
},
insert: function (item) {
if (item) this._insert(item, this.data.height - 1);
return this;
},
clear: function () {
this.data = {
children: [],
height: 1,
bbox: empty(),
leaf: true
};
return this;
},
remove: function (item) {
if (!item) return this;
var node = this.data,
bbox = this.toBBox(item),
path = [],
indexes = [],
i, parent, index, goingUp;
// depth-first iterative tree traversal
while (node || path.length) {
if (!node) { // go up
node = path.pop();
parent = path[path.length - 1];
i = indexes.pop();
goingUp = true;
}
if (node.leaf) { // check current node
index = node.children.indexOf(item);
if (index !== -1) {
// item found, remove the item and condense tree upwards
node.children.splice(index, 1);
path.push(node);
this._condense(path);
return this;
}
}
if (!goingUp && !node.leaf && contains(node.bbox, bbox)) { // go down
path.push(node);
indexes.push(i);
i = 0;
parent = node;
node = node.children[0];
} else if (parent) { // go right
i++;
node = parent.children[i];
goingUp = false;
} else node = null; // nothing found
}
return this;
},
toBBox: function (item) { return item; },
compareMinX: function (a, b) { return a[0] - b[0]; },
compareMinY: function (a, b) { return a[1] - b[1]; },
toJSON: function () { return this.data; },
fromJSON: function (data) {
this.data = data;
return this;
},
_all: function (node, result) {
var nodesToSearch = [];
while (node) {
if (node.leaf) result.push.apply(result, node.children);
else nodesToSearch.push.apply(nodesToSearch, node.children);
node = nodesToSearch.pop();
}
return result;
},
_build: function (items, left, right, height) {
var N = right - left + 1,
M = this._maxEntries,
node;
if (N <= M) {
// reached leaf level; return leaf
node = {
children: items.slice(left, right + 1),
height: 1,
bbox: null,
leaf: true
};
calcBBox(node, this.toBBox);
return node;
}
if (!height) {
// target height of the bulk-loaded tree
height = Math.ceil(Math.log(N) / Math.log(M));
// target number of root entries to maximize storage utilization
M = Math.ceil(N / Math.pow(M, height - 1));
}
// TODO eliminate recursion?
node = {
children: [],
height: height,
bbox: null
};
// split the items into M mostly square tiles
var N2 = Math.ceil(N / M),
N1 = N2 * Math.ceil(Math.sqrt(M)),
i, j, right2, right3;
multiSelect(items, left, right, N1, this.compareMinX);
for (i = left; i <= right; i += N1) {
right2 = Math.min(i + N1 - 1, right);
multiSelect(items, i, right2, N2, this.compareMinY);
for (j = i; j <= right2; j += N2) {
right3 = Math.min(j + N2 - 1, right2);
// pack each entry recursively
node.children.push(this._build(items, j, right3, height - 1));
}
}
calcBBox(node, this.toBBox);
return node;
},
_chooseSubtree: function (bbox, node, level, path) {
var i, len, child, targetNode, area, enlargement, minArea, minEnlargement;
while (true) {
path.push(node);
if (node.leaf || path.length - 1 === level) break;
minArea = minEnlargement = Infinity;
for (i = 0, len = node.children.length; i < len; i++) {
child = node.children[i];
area = bboxArea(child.bbox);
enlargement = enlargedArea(bbox, child.bbox) - area;
// choose entry with the least area enlargement
if (enlargement < minEnlargement) {
minEnlargement = enlargement;
minArea = area < minArea ? area : minArea;
targetNode = child;
} else if (enlargement === minEnlargement) {
// otherwise choose one with the smallest area
if (area < minArea) {
minArea = area;
targetNode = child;
}
}
}
node = targetNode;
}
return node;
},
_insert: function (item, level, isNode) {
var toBBox = this.toBBox,
bbox = isNode ? item.bbox : toBBox(item),
insertPath = [];
// find the best node for accommodating the item, saving all nodes along the path too
var node = this._chooseSubtree(bbox, this.data, level, insertPath);
// put the item into the node
node.children.push(item);
extend(node.bbox, bbox);
// split on node overflow; propagate upwards if necessary
while (level >= 0) {
if (insertPath[level].children.length > this._maxEntries) {
this._split(insertPath, level);
level--;
} else break;
}
// adjust bboxes along the insertion path
this._adjustParentBBoxes(bbox, insertPath, level);
},
// split overflowed node into two
_split: function (insertPath, level) {
var node = insertPath[level],
M = node.children.length,
m = this._minEntries;
this._chooseSplitAxis(node, m, M);
var newNode = {
children: node.children.splice(this._chooseSplitIndex(node, m, M)),
height: node.height
};
if (node.leaf) newNode.leaf = true;
calcBBox(node, this.toBBox);
calcBBox(newNode, this.toBBox);
if (level) insertPath[level - 1].children.push(newNode);
else this._splitRoot(node, newNode);
},
_splitRoot: function (node, newNode) {
// split root node
this.data = {
children: [node, newNode],
height: node.height + 1
};
calcBBox(this.data, this.toBBox);
},
_chooseSplitIndex: function (node, m, M) {
var i, bbox1, bbox2, overlap, area, minOverlap, minArea, index;
minOverlap = minArea = Infinity;
for (i = m; i <= M - m; i++) {
bbox1 = distBBox(node, 0, i, this.toBBox);
bbox2 = distBBox(node, i, M, this.toBBox);
overlap = intersectionArea(bbox1, bbox2);
area = bboxArea(bbox1) + bboxArea(bbox2);
// choose distribution with minimum overlap
if (overlap < minOverlap) {
minOverlap = overlap;
index = i;
minArea = area < minArea ? area : minArea;
} else if (overlap === minOverlap) {
// otherwise choose distribution with minimum area
if (area < minArea) {
minArea = area;
index = i;
}
}
}
return index;
},
// sorts node children by the best axis for split
_chooseSplitAxis: function (node, m, M) {
var compareMinX = node.leaf ? this.compareMinX : compareNodeMinX,
compareMinY = node.leaf ? this.compareMinY : compareNodeMinY,
xMargin = this._allDistMargin(node, m, M, compareMinX),
yMargin = this._allDistMargin(node, m, M, compareMinY);
// if total distributions margin value is minimal for x, sort by minX,
// otherwise it's already sorted by minY
if (xMargin < yMargin) node.children.sort(compareMinX);
},
// total margin of all possible split distributions where each node is at least m full
_allDistMargin: function (node, m, M, compare) {
node.children.sort(compare);
var toBBox = this.toBBox,
leftBBox = distBBox(node, 0, m, toBBox),
rightBBox = distBBox(node, M - m, M, toBBox),
margin = bboxMargin(leftBBox) + bboxMargin(rightBBox),
i, child;
for (i = m; i < M - m; i++) {
child = node.children[i];
extend(leftBBox, node.leaf ? toBBox(child) : child.bbox);
margin += bboxMargin(leftBBox);
}
for (i = M - m - 1; i >= m; i--) {
child = node.children[i];
extend(rightBBox, node.leaf ? toBBox(child) : child.bbox);
margin += bboxMargin(rightBBox);
}
return margin;
},
_adjustParentBBoxes: function (bbox, path, level) {
// adjust bboxes along the given tree path
for (var i = level; i >= 0; i--) {
extend(path[i].bbox, bbox);
}
},
_condense: function (path) {
// go through the path, removing empty nodes and updating bboxes
for (var i = path.length - 1, siblings; i >= 0; i--) {
if (path[i].children.length === 0) {
if (i > 0) {
siblings = path[i - 1].children;
siblings.splice(siblings.indexOf(path[i]), 1);
} else this.clear();
} else calcBBox(path[i], this.toBBox);
}
},
_initFormat: function (format) {
// data format (minX, minY, maxX, maxY accessors)
// uses eval-type function compilation instead of just accepting a toBBox function
// because the algorithms are very sensitive to sorting functions performance,
// so they should be dead simple and without inner calls
// jshint evil: true
var compareArr = ['return a', ' - b', ';'];
this.compareMinX = new Function('a', 'b', compareArr.join(format[0]));
this.compareMinY = new Function('a', 'b', compareArr.join(format[1]));
this.toBBox = new Function('a', 'return [a' + format.join(', a') + '];');
}
};
// calculate node's bbox from bboxes of its children
function calcBBox(node, toBBox) {
node.bbox = distBBox(node, 0, node.children.length, toBBox);
}
// min bounding rectangle of node children from k to p-1
function distBBox(node, k, p, toBBox) {
var bbox = empty();
for (var i = k, child; i < p; i++) {
child = node.children[i];
extend(bbox, node.leaf ? toBBox(child) : child.bbox);
}
return bbox;
}
function empty() { return [Infinity, Infinity, -Infinity, -Infinity]; }
function extend(a, b) {
a[0] = Math.min(a[0], b[0]);
a[1] = Math.min(a[1], b[1]);
a[2] = Math.max(a[2], b[2]);
a[3] = Math.max(a[3], b[3]);
return a;
}
function compareNodeMinX(a, b) { return a.bbox[0] - b.bbox[0]; }
function compareNodeMinY(a, b) { return a.bbox[1] - b.bbox[1]; }
function bboxArea(a) { return (a[2] - a[0]) * (a[3] - a[1]); }
function bboxMargin(a) { return (a[2] - a[0]) + (a[3] - a[1]); }
function enlargedArea(a, b) {
return (Math.max(b[2], a[2]) - Math.min(b[0], a[0])) *
(Math.max(b[3], a[3]) - Math.min(b[1], a[1]));
}
function intersectionArea (a, b) {
var minX = Math.max(a[0], b[0]),
minY = Math.max(a[1], b[1]),
maxX = Math.min(a[2], b[2]),
maxY = Math.min(a[3], b[3]);
return Math.max(0, maxX - minX) *
Math.max(0, maxY - minY);
}
function contains(a, b) {
return a[0] <= b[0] &&
a[1] <= b[1] &&
b[2] <= a[2] &&
b[3] <= a[3];
}
function intersects (a, b) {
return b[0] <= a[2] &&
b[1] <= a[3] &&
b[2] >= a[0] &&
b[3] >= a[1];
}
// sort an array so that items come in groups of n unsorted items, with groups sorted between each other;
// combines selection algorithm with binary divide & conquer approach
function multiSelect(arr, left, right, n, compare) {
var stack = [left, right],
mid;
while (stack.length) {
right = stack.pop();
left = stack.pop();
if (right - left <= n) continue;
mid = left + Math.ceil((right - left) / n / 2) * n;
select(arr, left, right, mid, compare);
stack.push(left, mid, mid, right);
}
}
// sort array between left and right (inclusive) so that the smallest k elements come first (unordered)
function select(arr, left, right, k, compare) {
var n, i, z, s, sd, newLeft, newRight, t, j;
while (right > left) {
if (right - left > 600) {
n = right - left + 1;
i = k - left + 1;
z = Math.log(n);
s = 0.5 * Math.exp(2 * z / 3);
sd = 0.5 * Math.sqrt(z * s * (n - s) / n) * (i - n / 2 < 0 ? -1 : 1);
newLeft = Math.max(left, Math.floor(k - i * s / n + sd));
newRight = Math.min(right, Math.floor(k + (n - i) * s / n + sd));
select(arr, newLeft, newRight, k, compare);
}
t = arr[k];
i = left;
j = right;
swap(arr, left, k);
if (compare(arr[right], t) > 0) swap(arr, left, right);
while (i < j) {
swap(arr, i, j);
i++;
j--;
while (compare(arr[i], t) < 0) i++;
while (compare(arr[j], t) > 0) j--;
}
if (compare(arr[left], t) === 0) swap(arr, left, j);
else {
j++;
swap(arr, j, right);
}
if (j <= k) left = j + 1;
if (k <= j) right = j - 1;
}
}
function swap(arr, i, j) {
var tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
// export as AMD/CommonJS module or global variable
if (typeof define === 'function' && define.amd) define(function() { return rbush; });
else if (typeof module !== 'undefined') module.exports = rbush;
else if (typeof self !== 'undefined') self.rbush = rbush;
else window.rbush = rbush;
})();
collection.features.forEach( indexFeature );
this.rtree = (new rbush()).RBush().load( bboxes );
this.polygons = polygons;
};
if( featureCollection !== undefined ){
this.loadFeatureCollection( featureCollection );
}
}
/**
* Find the polygon that a point intersects. Execute a bounding-box search to
* narrow down the candidate polygons to a small subset, and then perform
* additional point-in-polygon intersections to resolve any ambiguities.
*
* @param {number} x The x-coordinate of the point.
* @param {number} y The y-coordinate of the point.
* @return {undefined|object} If one or more bounding box intersections are
* found, return the first polygon that intersects (`x`, `y`); otherwise,
* `undefined`.
*
PolygonLookup.prototype.search = function search( x, y ){
var bboxes = this.rtree.search( [ x, y, x, y ] );
var pt = [ x, y ];
for( var ind = 0; ind < bboxes.length; ind++ ){
var polyObj = this.polygons[ bboxes[ ind ].polyId ];
var polyCoords = polyObj.geometry.coordinates[ 0 ];
if( pointInPolygon( pt, polyCoords ) ){
var inHole = false;
for( var subPolyInd = 1; subPolyInd < polyObj.geometry.coordinates.length; subPolyInd++ ){
if( pointInPolygon( pt, polyObj.geometry.coordinates[ subPolyInd ] ) ){
inHole = true;
break;
}
}
if( !inHole ){
return polyObj;
}
}
}
};
*/
/**
* Build a spatial index for a set of polygons, and store both the polygons and
* the index in this `PolygonLookup`.
*
* @param {object} collection A GeoJSON-formatted FeatureCollection.
*
PolygonLookup.prototype.loadFeatureCollection = function loadFeatureCollection( collection ){
var bboxes = [];
var polygons = [];
var polyId = 0;
function indexPolygon( poly ){
polygons.push(poly);
var bbox = getBoundingBox( poly.geometry.coordinates[ 0 ] );
bbox.polyId = polyId++;
bboxes.push(bbox);
}
function indexFeature( poly ){
if( poly.geometry.coordinates[ 0 ] !== undefined &&
poly.geometry.coordinates[ 0 ].length > 0){
switch( poly.geometry.type ){
case 'Polygon':
indexPolygon( poly );
break;
case 'MultiPolygon':
var childPolys = poly.geometry.coordinates;
for( var ind = 0; ind < childPolys.length; ind++ ){
var childPoly = {
type: 'Feature',
properties: poly.properties,
geometry: {
type: 'Polygon',
coordinates: childPolys[ ind ]
}
};
indexPolygon( childPoly );
}
break;
}
}
}
collection.features.forEach( indexFeature );
this.rtree = new RBush().load( bboxes );
this.polygons = polygons;
};
*/
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment