Created
December 1, 2012 03:18
-
-
Save ivannp/4180399 to your computer and use it in GitHub Desktop.
Back-testing SVM with e1071
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
svmComputeOneForecast = function( | |
id, | |
data, | |
response, | |
startPoints, | |
endPoints, | |
len, | |
history=500, | |
trace=FALSE, | |
kernel="radial", | |
gamma=10^(-5:-1), | |
cost=10^(0:2), | |
sampling="cross", | |
seed=1234, | |
featureSelection=c("add", "prune", "all"), | |
cross=10) | |
{ | |
# Determine the forecast length | |
startIndex = startPoints[id] | |
endIndex = endPoints[id] | |
forecastLength = endIndex - startIndex + 1 | |
# A row in the data is responsible for the corresponding value in the | |
# response. Thus, to forecast day X, we train the model on the previous | |
# *history* days, and then use the features for day X to forecast. | |
xtsData = data[index(data)[(startIndex-history):(startIndex-1)]] | |
xtsResponse = response[index(response)[(startIndex-history):(startIndex-1)]] | |
# Convert the input data and response to a matrix and a vector, respectively | |
xx = as.matrix( coredata( xtsData ) ) | |
yy = as.vector( coredata( xtsResponse ) ) | |
# We need to set the seed to have reprodcible results | |
set.seed( seed ) | |
if(featureSelection[1] == "add") { | |
# We add the features one by one, until we cannot improve the error | |
best = NULL | |
bestPerf = 1e9 | |
# Maintained sorted, the content are the column indexes in the original matrix | |
features = c() | |
availableFeatures = seq(1,ncol(xx)) | |
# Use greedy approach to add features | |
repeat { | |
bestColIdToAdd = 0L | |
# print( features ) | |
for(colId in 1:length(availableFeatures)) { | |
# Get the matrix for the current tunning and tune | |
zz = xx[,sort(c(features, availableFeatures[colId]))] | |
# print(paste(sep="", "trying adding feature ", availableFeatures[colId])) | |
newSvm = tune( svm, | |
train.x=zz, | |
train.y=yy, | |
ranges=list( gamma=gamma, cost=cost ), | |
tunecontrol=tune.control( sampling=sampling, cross=cross ), | |
kernel=kernel ) | |
# Check the performance improvement | |
newPerf = round(newSvm$best.performance, 8) | |
# print( paste( sep="", "new performance=", newPerf ) ) | |
if(newPerf < bestPerf) { | |
# print( paste( sep="", "old performance=", bestPerf, ", new performance=", newPerf ) ) | |
best = newSvm | |
bestPerf = newPerf | |
bestColIdToAdd = colId | |
} | |
} | |
if(bestColIdToAdd > 0) { | |
# print( paste( sep="", "improvement, adding feature ", availableFeatures[bestColIdToAdd] ) ) | |
# Found an improvement, update the features | |
features = sort(c(features, availableFeatures[bestColIdToAdd])) | |
availableFeatures = availableFeatures[-bestColIdToAdd] | |
# Exit if no features left | |
if(length(availableFeatures) == 0) break | |
} else { | |
# No improvements, done | |
break | |
} | |
} | |
} else { | |
# Train the SVM | |
# ss = svm( x=xx, y=yy, kernel=kernel, gamma=gamma[1], cost=cost[1] ) | |
best = tune( svm, | |
train.x=xx, | |
train.y=yy, | |
ranges=list( gamma=gamma, cost=cost ), | |
tunecontrol=tune.control( sampling=sampling, cross=cross ), | |
kernel=kernel ) | |
# print( "gotBest" ) | |
# print( paste( sep="", "performance=", round( best$best.performance, 6 ) ) ) | |
# An array to keep track of the original participating features (by index) | |
features = seq(1,ncol(xx)) | |
# print( length( features ) ) | |
# Use greedy approach to prune features | |
if(featureSelection[1] == "prune") { | |
repeat { | |
bestColIdToRemove = 0L | |
# print( features ) | |
for(colId in 1:ncol(xx)) { | |
# Remove column colId | |
zz = xx[,-colId] | |
# print( paste( sep="", "trying without feature ", colId ) ) | |
# Tune with the reduced number of columns | |
newBest = tune( svm, | |
train.x=zz, | |
train.y=yy, | |
ranges=list( gamma=gamma, cost=cost ), | |
tunecontrol=tune.control( sampling=sampling, cross=cross ), | |
kernel=kernel ) | |
# print( paste( sep="", "new performance=", round( newBest$best.performance, 6 ) ) ) | |
if(round( newBest$best.performance, 6 ) < round( best$best.performance, 6)) { | |
best = newBest | |
bestColIdToRemove = colId | |
# print( paste( sep="", "old performance=", round( best$best.performance, 6 ), | |
# ", new performance=", round( newBest$best.performance, 6 ) ) ) | |
} | |
} | |
if(bestColIdToRemove > 0) { | |
# Found an improvement | |
xx = xx[,-bestColIdToRemove] | |
features = features[-bestColIdToRemove] | |
# print( paste( sep="", "improvement, removed feature ", bestColIdToRemove ) ) | |
# Break if there is only a single feature left | |
if(length(features) == 1) break | |
} else { | |
# No improvements, done | |
break | |
} | |
} | |
} | |
} | |
# print( paste( sep="", "final features: (", paste( sep=",", collapse=",", features ), ")" ) ) | |
# Predict using the SVM, use only the remaining features | |
xtsNewData = data[index(data)[startIndex:endIndex]] | |
newData = as.matrix( coredata( xtsNewData[,features] ) ) | |
fore = predict( best$best.model, newData ) | |
if( trace ) { | |
str = paste( sep="", | |
"\n", index(response)[startIndex], "\n", | |
"=======================\n", | |
" from: ", head(index(xtsResponse),1), | |
", to: ", tail(index(xtsResponse),1), | |
", length: ", length(index(xtsResponse)), | |
"\n new data: from: ", head(index(xtsNewData), 1), | |
", to: ", tail(index(xtsNewData), 1), | |
", length: ", NROW(xtsNewData), | |
"\n forecast length: ", forecastLength, | |
"\n best model performance: ", round( best$best.performance, 6 ), | |
"\n best model features: (", paste( collapse=",", features), ")", | |
"\n best model gamma: ", best$best.model$gamma, | |
"\n best model cost: ", best$best.model$cost, | |
"\n forecasts: ", | |
paste( collapse=", ", round( fore, 6 ) ), | |
"\n" ) | |
cat( sep="", str ) | |
} | |
return( list( index=startIndex, | |
forecasts=fore, | |
performance=best$best.performance, | |
features=features, | |
gamma=best$best.model$gamma, | |
cost=best$best.model$cost ) ) | |
} | |
svmComputeForecasts = function( | |
data, | |
response, | |
history=500, | |
modelPeriod="days", | |
modelPeriodMultiple=1, | |
trace=TRUE, | |
startDate, | |
endDate, | |
kernel="radial", | |
gamma=10^(-5:-1), | |
cost=10^(0:2), | |
sampling="cross", | |
cross=10, | |
featureSelection=c("add", "prune", "all"), | |
cores) | |
{ | |
require( e1071 ) | |
stopifnot( NROW( data ) == NROW( response ) ) | |
len = NROW( response ) | |
# Determine the starting index | |
if( !missing( startDate ) ) | |
{ | |
startIndex = max( len - NROW( index( data[paste( sep="", startDate, "/" )] ) ) + 1, | |
history + 2 ) | |
} | |
else | |
{ | |
startIndex = history + 2 | |
} | |
# Determine the ending index | |
if( missing( endDate ) ) | |
{ | |
lastIndex = len | |
} | |
else | |
{ | |
lastIndex = NROW( index( data[paste( sep="", "/", endDate )] ) ) | |
} | |
if( startIndex > lastIndex ) | |
{ | |
return( NULL ) | |
} | |
modelPeriod = tolower( modelPeriod[1] ) | |
forecasts = rep( NA, len ) | |
gammas = rep( NA, len ) | |
costs = rep( NA, len ) | |
performances = rep( NA, len ) | |
features = rep( "", len ) | |
# Get the interesting indexes | |
periods = index(data)[startIndex:lastIndex] | |
# Compute the end points for each period (day, week, month, etc) | |
endPoints = endpoints( periods, modelPeriod, modelPeriodMultiple ) | |
# Compute the starting points of each period, relative to the *data* index | |
startPoints = endPoints + startIndex | |
# Remove the last start point - it's outside | |
length(startPoints) = length(startPoints) - 1 | |
# Make the end points relative to the *data* index | |
endPoints = endPoints + startIndex - 1 | |
# Remove the first end point - it's always zero | |
endPoints = tail( endPoints, -1 ) | |
stopifnot( length( endPoints ) == length( startPoints ) ) | |
if( missing( cores ) ) { | |
cores = 1 | |
} | |
res = mclapply( seq(1,length(startPoints)), | |
svmComputeOneForecast, | |
data=data, | |
response=response, | |
startPoints=startPoints, | |
endPoints=endPoints, | |
len=len, | |
history=history, | |
trace=TRUE, | |
kernel=kernel, | |
gamma=gamma, | |
cost=cost, | |
featureSelection=featureSelection, | |
mc.cores=cores ) | |
for( ll in res ) | |
{ | |
# Prepare the indexes | |
ii = ll[["index"]] | |
jj = ii + NROW( ll[["forecasts"]] ) - 1 | |
# Copy the output | |
forecasts[ii:jj] = ll[["forecasts"]] | |
gammas[ii:jj] = ll[["gamma"]] | |
costs[ii:jj] = ll[["cost"]] | |
performances[ii:jj] = ll[["performance"]] | |
# Encode the participating features as a bit mask stored in a single | |
# integer. This representation limits us to max 32 features. | |
features[ii:jj] = sum( 2^( ll[["features"]] - 1 ) ) | |
} | |
sigUp = ifelse( forecasts >= 0, 1, 0 ) | |
sigUp[is.na( sigUp )] = 0 | |
sigDown = ifelse( forecasts < 0, -1, 0 ) | |
sigDown[is.na( sigDown)] = 0 | |
# forecasts[is.na( forecasts )] = 0 | |
sig = sigUp + sigDown | |
res = merge( reclass( sig, response ), | |
reclass( sigUp, response ), | |
reclass( sigDown, response ), | |
na.trim( reclass( forecasts, response ) ), | |
reclass( performances, response ), | |
reclass( gammas, response ), | |
reclass( costs, response ), | |
reclass( features, response ), | |
all=F ) | |
colnames( res ) = c( "Indicator", "Up", "Down", "Forecasts", "Performance", "Gamma", "Cost", "Features" ) | |
return( res ) | |
} | |
svmFeatures = function(series) | |
{ | |
require(PerformanceAnalytics) | |
close = Cl(series) | |
rets = na.trim(ROC(close, type="discrete")) | |
# 1-day, 2-day, 3-day, 5-day, 10-day, 20-day and 50-day returns | |
res = merge(na.trim(lag(rets, 1)), | |
na.trim(lag(ROC(close, type="discrete", n=2), 1)), | |
na.trim(lag(ROC(close, type="discrete", n=3), 1)), | |
na.trim(lag(ROC(close, type="discrete", n=5), 1)), | |
na.trim(lag(ROC(close, type="discrete", n=10), 1)), | |
na.trim(lag(ROC(close, type="discrete", n=20), 1)), | |
na.trim(lag(ROC(close, type="discrete", n=50), 1)), | |
all=FALSE) | |
# Add mean, median, sd, mad, skew and kurtosis | |
res = merge(res, | |
xts(na.trim(lag(rollmean(rets, k=21, align="right"),1))), | |
xts(na.trim(lag(rollmedian(rets, k=21, align="right"),1))), | |
xts(na.trim(lag(rollapply(rets, width=21, align="right", FUN=sd),1))), | |
xts(na.trim(lag(rollapply(rets, width=21, align="right", FUN=mad),1))), | |
xts(na.trim(lag(rollapply(rets, width=21, align="right", FUN=skewness),1))), | |
xts(na.trim(lag(rollapply(rets, width=21, align="right", FUN=kurtosis),1))), | |
all=FALSE) | |
# Add volume with a lag of two | |
res = merge(res, xts(na.trim(lag(Vo(series),2))), all=FALSE) | |
colnames(res) = c("ROC.1", "ROC.2", "ROC.3", "ROC.5", "ROC.10", "ROC.20", "ROC.50", | |
"MEAN", "MEDIAN", "SD", "MAD", "SKEW", "KURTOSIS", | |
"VOLUME") | |
return(res) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
sir please can you suggest codes for how to forecast monthly uni variate data by SVM.