Skip to content

Instantly share code, notes, and snippets.

@jaehyeon-kim
Last active August 29, 2015 14:15
Show Gist options
  • Save jaehyeon-kim/5622ae9fa982e0b46550 to your computer and use it in GitHub Desktop.
Save jaehyeon-kim/5622ae9fa982e0b46550 to your computer and use it in GitHub Desktop.
#
# updateCM aims to extend a confusion matrix
# by adding model errors to the last column and use errors to the last row.
# Both square and non-square matrices are supported
#
# Usage
# set.seed(1)
# actual = ifelse(rnorm(100,0,1)<0,"low","high")
# fitted = ifelse(rnorm(100,1,5)<0,"low","high")
# updateCM(table(actual,fitted))
#
# last modified on Feb 14, 2015
#
updateCM = function(cm, type="Pred") {
if(class(cm)=="table") {
if(length(dim(cm)) == 2) {
if(nrow(cm) > 0) {
# row wise misclassification
modelError = function(cm) {
errors = c()
# if(square) else(non-square matrix)
if(nrow(cm)==ncol(cm)) {
for(i in 1:nrow(cm)) {
err = (sum(cm[i,]) - sum(cm[i,i])) / sum(cm[i,])
errors = c(errors,err)
}
errors = c(errors,(1-sum(diag(cm))/sum(cm)))
} else {
df = as.data.frame(cm,stringsAsFactors = FALSE)
colnames(df) = c("row","col","freq")
for(i in 1:nrow(cm)) {
freq = tryCatch({
sum(subset(df,subset=row==rownames(cm)[i] & col==rownames(cm)[i],select=freq))
},
error=function(cond) { return(0) }
)
err = (sum(cm[i,]) - freq) / sum(cm[i,])
errors = c(errors,err)
}
freq = tryCatch({
sum(subset(df,subset=row==col,select=freq))
},
error=function(cond) { return(0) }
)
errors = c(errors,(1-freq/sum(cm)))
}
errors
}
# column wise misclassification
useError = function(cm) {
errors = c()
# if(square) else(non-square matrix)
if(nrow(cm)==ncol(cm)) {
for(i in 1:ncol(cm)) {
err = (sum(cm[,i]) - sum(cm[i,i])) / sum(cm[,i])
errors = c(errors,err)
}
} else {
for(i in 1:ncol(cm)) {
freq = tryCatch({
sum(subset(df,subset=row==colnames(cm)[i] & col==colnames(cm)[i],select=freq))
},
error=function(cond) { return(0) }
)
err = (sum(cm[,i]) - freq) / sum(cm[,i])
errors = c(errors,err)
}
}
errors
}
# use error added to the last row
cmUp = rbind(cm,as.table(useError(cm)))
# model error added to the last column
cmUp = cbind(cmUp,as.matrix(modelError(cm)))
rownames(cmUp) = c(paste("actual",rownames(cm),sep=": "),"Use Error")
colnames(cmUp) = c(paste(type,colnames(cm),sep=": "),"Model Error")
round(cmUp,2)
} else {
message("Table has no row")
}
}
else {
message("Enter a table with 2 variables")
}
}
else {
message("Enter an object of the 'table' class")
}
}
#
# regCM() produces a confusion matrix for a continuous response
# where quantile values of actual data split both actual and fitted response
# Note that it depends on updateCM() and do not include 0 and 1 in probs
#
# Usage
# set.seed(1)
# actual = rnorm(100,0,1)
# fitted = rnorm(100,1,5)
# probs = seq(0.1,0.9,0.1)
# regCM(actual,fitted,probs)
#
# last modified on Feb 14, 2015
#
regCM = function(actual, fitted, probs, type="Pred", ...) {
if(length(actual[is.na(actual)]) + length(fitted[is.na(fitted)]) > 0) {
message("Currently NA values are not supported")
} else {
probs = sort(round(probs,2))
conv = function(data,ref,probs) {
# ref is reference to produce quantile values
outs = c()
if(length(probs) == 1) {
lower = length(data[data<=quantile(ref,probs[1])])
upper = length(data[data>quantile(ref,probs[1])])
outs = c(outs,rep(paste0(probs[1]*100,"%-"),lower)
,rep(paste0(probs[1]*100,"%+"),upper))
} else {
lower = length(data[data<=quantile(ref,probs[1])])
outs = c(outs,rep(paste0(probs[1]*100,"%-"),lower))
for(i in 2:length(probs)) {
lower = length(data[data<=quantile(ref,probs[i])]) - length(data[data<=quantile(ref,probs[i-1])])
outs = c(outs,rep(paste0(probs[i]*100,"%-"),lower))
}
upper = length(data[data>quantile(ref,probs[length(probs)])])
outs = c(outs,rep(paste0(probs[length(probs)]*100,"%+"),upper))
}
outs
}
updateCM(table(conv(actual,actual,probs),conv(fitted,actual,probs)),type)
}
}
#
# bestParam select best single tunning parameter given measure, error and std of error
# 1 standard error is applied and only 'cptable' of rpart() is tested.
# Note: If caret result, isDesc=FALSE
#
# Usage
# require(ISLR)
# require(rpart)
# set.seed(125)
# mod = rpart(Sales ~ ., data=Carseats, control=rpart.control(cp=0))
# bestParam(mod$cptable,"CP","xerror","xstd")
#
# last modified on Feb 13, 2015
#
bestParam = function(data,param,error,errStd,isDesc=TRUE, ...) {
# convert name to index
ind = function(name, df) { match(name, colnames(df)) }
param = ind(param, data)
error = ind(error, data)
errStd = ind(errStd, data)
# search min error
from = ifelse(isDesc,1,nrow(data))
to = ifelse(isDesc,nrow(data),1)
by = ifelse(isDesc,1,-1)
pick = c(from,data[from,error],data[from,errStd])
for(i in seq(from,to,by)) {
if(data[i,error]<=pick[2]) pick=c(data[i,param],data[i,error],data[i,errStd])
}
out = data.frame(lowest=pick,row.names=c("param","error","errStd"))
# select best param
best = data[data[,error]<=pick[2]+pick[3],]
best = if(isDesc) best[1,c(param,error,errStd)] else best[nrow(best),c(param,error,errStd)]
# correction for caret result
if(class(best)!="numeric") best = c(t(best))
out[,2] = data.frame(best=best)
out
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment