Skip to content

Instantly share code, notes, and snippets.

@jaems33
Created May 31, 2018 19:29
Show Gist options
  • Save jaems33/34a2136fed8757bed7897f72acab22ca to your computer and use it in GitHub Desktop.
Save jaems33/34a2136fed8757bed7897f72acab22ca to your computer and use it in GitHub Desktop.
import random
import numpy as np
import matplotlib.pyplot as plt
# Udacity provided code
class Robot(object):
def __init__(self, length=20.0):
"""
Creates robot and initializes location/orientation to 0, 0, 0.
"""
self.x = 0.0
self.y = 0.0
self.orientation = 0.0
self.length = length
self.steering_noise = 0.0
self.distance_noise = 0.0
self.steering_drift = 0.0
def set(self, x, y, orientation):
"""
Sets a robot coordinate.
"""
self.x = x
self.y = y
self.orientation = orientation % (2.0 * np.pi)
def set_noise(self, steering_noise, distance_noise):
"""
Sets the noise parameters.
"""
# makes it possible to change the noise parameters
# this is often useful in particle filters
self.steering_noise = steering_noise
self.distance_noise = distance_noise
def set_steering_drift(self, drift):
"""
Sets the systematical steering drift parameter
"""
self.steering_drift = drift
def move(self, steering, distance, tolerance=0.001, max_steering_angle=np.pi / 4.0):
"""
steering = front wheel steering angle, limited by max_steering_angle
distance = total distance driven, most be non-negative
"""
if steering > max_steering_angle:
steering = max_steering_angle
if steering < -max_steering_angle:
steering = -max_steering_angle
if distance < 0.0:
distance = 0.0
# apply noise
steering2 = random.gauss(steering, self.steering_noise)
distance2 = random.gauss(distance, self.distance_noise)
# apply steering drift
steering2 += self.steering_drift
# Execute motion
turn = np.tan(steering2) * distance2 / self.length
if abs(turn) < tolerance:
# approximate by straight line motion
self.x += distance2 * np.cos(self.orientation)
self.y += distance2 * np.sin(self.orientation)
self.orientation = (self.orientation + turn) % (2.0 * np.pi)
else:
# approximate bicycle model for motion
radius = distance2 / turn
cx = self.x - (np.sin(self.orientation) * radius)
cy = self.y + (np.cos(self.orientation) * radius)
self.orientation = (self.orientation + turn) % (2.0 * np.pi)
self.x = cx + (np.sin(self.orientation) * radius)
self.y = cy - (np.cos(self.orientation) * radius)
def __repr__(self):
return '[x=%.5f y=%.5f orient=%.5f]' % (self.x, self.y, self.orientation)
def run(robot, tau_p, tau_d, tau_i, n=200, speed=1.0):
"""
Creates a 2-d trajectory of a robot.
Arguments:
tau_p: Float, controls importance of proportionality
tau_d: Float, controls importance of derivative
tau_i: Float, controls importance of integral
n: Integer, number of steps the robot should take.
speed: Float, how many seconds pass per timestep.
Returns:
x_trajectory, y_trajectory: A 2d list containing the
path taken by the robot.
"""
x_trajectory, y_trajectory = [], []
integral = 0.0
cte = robot.y
for i in range(n):
diff = (robot.y - cte) / speed
cte = robot.y
integral += cte
steer = (-tau_p * cte) - (tau_d * diff) - (tau_i * integral)
robot.move(steer, speed)
x_trajectory.append(robot.x)
y_trajectory.append(robot.y)
return x_trajectory, y_trajectory
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment