Skip to content

Instantly share code, notes, and snippets.

@jamesamiller
Last active May 20, 2020 16:46
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save jamesamiller/95ed21a498e4ebd797cf309350d7a188 to your computer and use it in GitHub Desktop.
Save jamesamiller/95ed21a498e4ebd797cf309350d7a188 to your computer and use it in GitHub Desktop.
The worldlines of stars and a rocket in the inertial star frame (special relativity)
\documentclass[crop=true, border=10pt]{standalone}
\usepackage{comment}
\begin{comment}
:Title: Motion of stars in the accelerated rocket frame
:Slug: Rocket frame
:Tags: special relativity
:Author: J A Miller, UAH Physics & Astronomy, millerja@uah.edu, 2020/05/12
Worldlines of stars and a rocket in the inertial $x$-$t$ frame, with light rays from one of
the stars to the rocket worldline.
This figure complements that of the view from the accelerated rocket frame:
https://gist.github.com/jamesamiller/b2609beb3b353f4dc50a3a42ad152d12
Basic plot style and colors from:
https://gist.github.com/mcnees/45b9f53ad371c38ba6f3759df5880fb1
---------------------------------------------------------------------
Background
---------------------------------------------------------------------
The equations of motion for an object undergoing uniform proper acceleration $\alpha$ are
\begin{equation}
\begin{split}
x &= \frac{1}{\alpha} \cosh(\alpha \tau) - \frac{1}{\alpha} + x_0 \\
t &= \frac{1}{\alpha} \sinh(\alpha \tau),
\end{split}
\end{equation}
where $\tau$ is the proper time, and $x_0$ is the starting location.
\end{comment}
\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\usepackage{xcolor}
% colors
\definecolor{plum}{rgb}{0.36078, 0.20784, 0.4}
\definecolor{chameleon}{rgb}{0.30588, 0.60392, 0.023529}
\definecolor{cornflower}{rgb}{0.12549, 0.29020, 0.52941}
\definecolor{scarlet}{rgb}{0.8, 0, 0}
\definecolor{brick}{rgb}{0.64314, 0, 0}
\definecolor{sunrise}{rgb}{0.80784, 0.36078, 0}
\definecolor{lightblue}{rgb}{0.15,0.35,0.75}
% ----------------------- user specifications ------------------------
% proper acceleration
\newcommand*{\accel}{1.0}
% maximum proper time for the rocket motion
\newcommand*{\taumax}{2.95}
% calculate the inverse of acceleration
\pgfmathsetmacro{\accelinv}{1/\accel}
% initial starting point for the rocket
\newcommand*{\xinit}{0} % this is $x_0$
% inertial frame location of stars
\newcommand*{\xone}{8}
\newcommand*{\xtwo}{5}
\newcommand*{\xthree}{2}
% Set the point style for the proper time ticks
\tikzset{
taudot/.style={circle,draw=scarlet!70,fill=scarlet!20,inner sep=1.5pt}
}
% Maximum t value of the plot
\newcommand*{\tmax}{10}
% function to find the coordinates of the intersection of the light rays with the
% rocket worldline. \a is defined below.
\pgfkeys{/pgf/declare function={xint(\a) = 0.5*\a*\a*\accel/(1+\a*\accel);}}
\pgfkeys{/pgf/declare function={tint(\a) = 0.5*\a*(2+\a*\accel)/(1+\a*\accel);}}
% ------------------------ begin figure ------------------------------
\begin{document}
\begin{tikzpicture}[scale=1,domain=-2:9]
\tikzstyle{axisarrow} = [-{Latex[inset=0pt,length=7pt]}]
% Draw the background grid.
\draw [cornflower!30,step=0.2,thin] (-1,-1) grid (9,\tmax);
\draw [cornflower!60,step=1.0,thin] (-1,-1) grid (9,\tmax);
% Clip everything that falls outside the grid
\clip(-1,-1) rectangle (9,\tmax);
% Draw Axes
\draw[thick,axisarrow] (0,-1) -- (0,\tmax);
\node[right,inner sep=0pt] at (0.2,9.7) {$t$};
\draw[thick,axisarrow] (-1,0) -- (9,0);
\node[inner sep=0pt] at (8.5,-0.3) {$x$};
% Draw the worldline of the rocket
\draw[domain=0:\taumax,smooth,variable=\tau,plum,thick,samples=100,axisarrow]
plot ({(\accelinv*cosh(\accel*\tau)-\accelinv+\xinit)},{\accelinv*sinh(\accel*\tau)});
% Add the location at some proper times
\foreach \tau in {0,1,1.5,2.0,2.5,2.9}
{
\node[taudot] at ({(\accelinv*cosh(\accel*\tau)-\accelinv+\xinit)},{\accelinv*sinh(\accel*\tau)}) {};
}
% Worldlines of the stars
\draw[thick,black,axisarrow] (\xone,-1) -- (\xone,\tmax);
\node[rotate=90,inner sep=0pt] at (\xone-0.3,3.0) {Star 1};
\draw[thick,black,axisarrow] (\xtwo,-1) -- (\xtwo,\tmax);
\node[rotate=90,inner sep=0pt] at (\xtwo-0.3,7.0) {Star 2};
\draw[thick,black,axisarrow] (\xthree,-1) -- (\xthree,\tmax);
\node[rotate=90,inner sep=0pt] at (\xthree-0.3,6.0) {Star 3};
% Worldlines of the light reaching the rocket from a star
\foreach \t in {-4,-3,-2,-1,0,1,2,3,4,5}
{
\pgfmathsetmacro{\a}{\xtwo+\t}
\draw[thick,scarlet,axisarrow]
(\xtwo,\t) -- ({xint(\a)},{tint(\a)});
}
% Worldlines of the light from the star after the rocket has gone by
\foreach \t in {6,7,8,9}
{
\pgfmathsetmacro{\a}{\t-\xtwo}
\draw[thick,scarlet,axisarrow]
(\xtwo,\t) -- ({7},{7+\a});
}
% Asymptote
\draw[thick,chameleon] (-\accelinv,0) -- (9,9+\accelinv);
\end{tikzpicture}
\end{document}
@jamesamiller
Copy link
Author

Output from the above code.
fig-starsInertialCoor

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment