Skip to content

Instantly share code, notes, and snippets.

@jamesamiller
Last active May 20, 2020 16:47
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save jamesamiller/b2609beb3b353f4dc50a3a42ad152d12 to your computer and use it in GitHub Desktop.
Save jamesamiller/b2609beb3b353f4dc50a3a42ad152d12 to your computer and use it in GitHub Desktop.
Plot the worldlines of stars in an accelerated rocket frame (special relativity)
\documentclass[crop=true, border=10pt]{standalone}
\usepackage{comment}
\begin{comment}
:Title: Motion of stars in the accelerated rocket frame
:Slug: Accelerated frame
:Tags: special relativity
:Author: J A Miller, UAH Physics & Astronomy, millerja@uah.edu, 2020/05/12
Worldlines of stars in the accelerated rocket coordinates $\xi$ and $\eta$.
The view from the inertial frame of the stars is given here:
https://gist.github.com/jamesamiller/95ed21a498e4ebd797cf309350d7a188
Basic plot style and colors from:
https://gist.github.com/mcnees/45b9f53ad371c38ba6f3759df5880fb1
---------------------------------------------------------------------
Background
---------------------------------------------------------------------
The equations of motion for an object undergoing uniform proper acceleration $\alpha$ are
\begin{equation}
\begin{split}
x &= \frac{1}{\alpha} \cosh(\alpha \tau) - \frac{1}{\alpha} + x_0 \\
t &= \frac{1}{\alpha} \sinh(\alpha \tau),
\end{split}
\end{equation}
where $\tau$ is the proper time, and $x_0$ is the starting location.
Accelerated coordinates can be defined by
\begin{equation}
\begin{split}
\xi &= \qty[ \qty( x - x_0 + \frac{1}{\alpha} )^2 - t^2 ]^{1/2} - \frac{1}{\alpha} \\
\eta &= \frac{1}{\alpha} \tanh^{-1} \frac{t}{x - x_0 + 1/\alpha}.
\end{split}
\end{equation}
When you put the equations of motion into these coordinates, you get $\xi = 0$ and $\eta = \tau$, as you would want. The object stays stationary at $\xi=0$ as the coordinate system rides with it. The quantity $\eta$ is the time coordinate, and equals the proper time. The transformation is only defined for $|t| < x - x_0 + \frac{1}{\alpha}$.
We can plot the motion of objects in this frame. For example, suppose a rocket has uniform acceleration $\alpha$ starting from $x_0 = 0$ in the inertial frame. If a star is at some inertial location $x$, we can plot its worldline in the rocket frame.
We will observe it to approach and fall behind the rocket, and tend toward an event horizon at $-1/\alpha$.
\end{comment}
\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\usepackage{xcolor}
% colors
\definecolor{plum}{rgb}{0.36078, 0.20784, 0.4}
\definecolor{chameleon}{rgb}{0.30588, 0.60392, 0.023529}
\definecolor{cornflower}{rgb}{0.12549, 0.29020, 0.52941}
\definecolor{scarlet}{rgb}{0.8, 0, 0}
\definecolor{brick}{rgb}{0.64314, 0, 0}
\definecolor{sunrise}{rgb}{0.80784, 0.36078, 0}
\definecolor{lightblue}{rgb}{0.15,0.35,0.75}
% ----------------------- user specifications ------------------------
% proper acceleration
\newcommand*{\accel}{1.0}
% calculate the inverse of acceleration
\pgfmathsetmacro{\accelinv}{1/\accel}
% initial starting point for the rocket
\newcommand*{\xinit}{0} % this is $x_0$
% inertial frame location of stars
\newcommand*{\xone}{8}
\pgfmathsetmacro{\tmaxone}{(\xone-\xinit+\accelinv)}
\newcommand*{\xtwo}{5}
\pgfmathsetmacro{\tmaxtwo}{(\xtwo-\xinit+\accelinv)}
\newcommand*{\xthree}{2}
\pgfmathsetmacro{\tmaxthree}{(\xthree-\xinit+\accelinv)}
% define the arctanh
\pgfkeys{/pgf/declare function={arctanh(\x) = 0.5*(ln(1+\x)-ln(1-\x));}}
% ------------------------ begin figure ------------------------------
\begin{document}
\begin{tikzpicture}[scale=1,domain=-2:9]
\tikzstyle{axisarrow} = [-{Latex[inset=0pt,length=7pt]}]
% Draw the background grid.
\draw [cornflower!30,step=0.2,thin] (-2,-1) grid (9,5);
\draw [cornflower!60,step=1.0,thin] (-2,-1) grid (9,5);
% Clip everything that falls outside the grid
\clip(-2,-1) rectangle (9,5);
% Draw Axes
\draw[thick,axisarrow] (0,-1) -- (0,5);
\node[right,inner sep=0pt] at (0.2,4.7) {$\eta$ (Worldline of the Rocket)};
\draw[thick,axisarrow] (-2,0) -- (9,0);
\node[inner sep=0pt] at (8.5,-0.3) {$\xi$};
% Event horizon
\draw[thick,dashed,scarlet] (-\accelinv,-1) -- (-\accelinv,5);
\node[rotate=90,inner sep=0pt] at (-\accelinv-0.2,2.0) {Event Horizon};
% Draw the worldlines of the stars
\foreach \tmax in {\tmaxone,\tmaxtwo,\tmaxthree}
{
\draw[domain=0:\tmax-0.0001,smooth,variable=\t,plum,thick,samples=1000,axisarrow]
plot ({(sqrt(\tmax*\tmax-\t*\t)-\accelinv)},{(\accelinv*arctanh(\t/\tmax))});
}
% Some more labels
\node[right,inner sep=0pt] at (4,1.4) {Worldlines of the Stars};
\node[above right,inner sep=0pt] at (6,4) {$\alpha = 1, x_0 = 0$};
\end{tikzpicture}
\end{document}
@jamesamiller
Copy link
Author

The plot using the above parameters.
fig-starsAccelCoor

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment