Skip to content

Instantly share code, notes, and snippets.

@jamesamiller
Created June 18, 2020 19:08
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save jamesamiller/dc289e2a7be377b81c5279a42a0b3662 to your computer and use it in GitHub Desktop.
Save jamesamiller/dc289e2a7be377b81c5279a42a0b3662 to your computer and use it in GitHub Desktop.
Worldlines of Rindler observers in a particular Rindler reference frame (special relativity)
\documentclass[crop=true, border=10pt]{standalone}
\usepackage{comment}
\begin{comment}
:Title: Rindler observers in a reference accelerated frame
:Slug: Rindler observers
:Tags: special relativity
:Author: J A Miller, UAH Physics & Astronomy, millerja@uah.edu, 2020/06/10
Worldlines of 9 accelerated observers in the accelerated coordinates $\xi$ and $\eta$ of a reference observer with proper acceleration of unity (in some inverse time units). These observers are called Rindler observers.
Figure caption:
\caption{
\textit{Purple arrows:} Worldlines of accelerated observers with $x_0 = n/\alpha_R$ ($n = 1, 2, \ldots, 9$) in the accelerated reference frame $\xi$--$\eta$ of a reference observer (which has $n=0$). The fraction below each worldline is the acceleration of that observer in units of the reference observer. \textit{Filled circles:} The local proper time for an observer every $5$ units of time. \textit{Shaded area:} The region beyond the event horizon $\xi = -1/\alpha_R$ for all observers. Here, $\alpha_R = 1$ (in some inverse time unit).
}
Basic plot style and colors from:
https://gist.github.com/mcnees/45b9f53ad371c38ba6f3759df5880fb1
---------------------------------------------------------------------
Background
---------------------------------------------------------------------
\begin{enumerate}
\item Establish an accelerated $\xi$--$\eta$ frame for some reference acceleration $\alpha_R$. We will take the initial inertial frame location of this accelerated frame $x_{0R} = 0$. Hence, the transformations to this frame are given by
\begin{equation}\label{eq-xietaR}
\begin{split}
\xi &= \qty[ \qty( x + \frac{1}{\alpha_R} )^2 - t^2 ]^{1/2} - \frac{1}{\alpha_R} \\
\eta &= \frac{1}{\alpha_R} \tanh^{-1} \frac{t}{x + 1/\alpha_R}.
\end{split}
\end{equation}
The center of the hyperbola in the inertial frame is $-1/\alpha_R$, and this is also the $\xi$ location of the event horizon in the accelerated frame. (Note that the event horizon remains a constant distance away from the accelerated observer.)
\item Now establish another accelerated frame which starts at some $x_0 > 0$ and which has acceleration
\begin{equation}\label{eq-alphaRindler}
\alpha = \frac{\alpha_R}{1+ x_0 \alpha_R}.
\end{equation}
This choice will guarantee that the proper distance between the reference observer and this observer will remain constant at $x_0$. Also note that the center of the hyperbola $x_0 - 1/\alpha$ for the inertial frame motion of this observer remains at $-1/\alpha_R$.
If we now substitute the inertial frame equations of motion for this observer
\begin{equation}\label{eq-xthypappen}
\begin{split}
x &= \frac{1}{\alpha} \cosh(\alpha \tau) - \frac{1}{\alpha} + x_0 \\
&= \frac{1}{\alpha} \cosh(\alpha \tau) - \frac{1}{\alpha_R} \\
t &= \frac{1}{\alpha} \sinh(\alpha \tau)
\end{split}
\end{equation}
into the tranformations \eqref{eq-xietaR) to the reference observer frame, we find that
\begin{equation}
\begin{split}
\xi &= x_0 \\
\eta &= \frac{\alpha}{\alpha_R}\tau .
\end{split}
\end{equation}
Thus, in the reference accelerated frame, the new, additional accelerated frame remains at location $x_0$ (a constant proper distance away) and has a local proper time $\tau$ related to the reference proper time $\eta$. For instance, taking $x_0 = n/\alpha_R$, for some number $n$, we have $\eta = \tau/(1+n)$.
Also note that all these observers share the same event horizon as the reference observer.
\item We can now continue to add additional accelerated observers with progressively larger values of $x_0$, to build a network of related accelerated observers. These observers are called \emph{Rindler observers}, and all of their local times and locations are related.
\end{enumerate}
\end{comment}
\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\usepackage{xcolor}
% colors
\definecolor{plum}{rgb}{0.36078, 0.20784, 0.4}
\definecolor{chameleon}{rgb}{0.30588, 0.60392, 0.023529}
\definecolor{cornflower}{rgb}{0.12549, 0.29020, 0.52941}
\definecolor{scarlet}{rgb}{0.8, 0, 0}
\definecolor{brick}{rgb}{0.64314, 0, 0}
\definecolor{sunrise}{rgb}{0.80784, 0.36078, 0}
\definecolor{lightblue}{rgb}{0.15,0.35,0.75}
% ----------------------- user specifications ------------------------
% proper acceleration of reference frame
\newcommand*{\accelR}{1.0}
% its inverse
\pgfmathsetmacro{\accelRinv}{1/\accelR}
% initial starting point for the reference frame in the inertial/lab system
\newcommand*{\xinitR}{0} % this is $x_0$.
% maximum proper time of the reference frame
\newcommand*{\etamax}{7}
% ------------------------ begin figure ------------------------------
% Set the point style for the proper time ticks
\tikzset{
taudot/.style={circle,draw=scarlet!70,fill=scarlet!20,inner sep=1.5pt}
}
\begin{document}
\begin{tikzpicture}[scale=1.0,domain=-2:10]
\tikzstyle{axisarrow} = [-{Latex[inset=0pt,length=7pt]}]
% Draw the background grid.
\draw [cornflower!30,step=0.2,thin] (-2,-1) grid (10,8);
\draw [cornflower!60,step=1.0,thin] (-2,-1) grid (10,8);
% Clip everything that falls outside the grid
\clip(-2,-1) rectangle (10,8);
% Draw Axes
\draw[thick,axisarrow] (0,-1) -- (0,8);
\node[right,inner sep=0pt] at (0.2,7.7) {$\eta$ (Reference Frame Worldline)};
\draw[thick,axisarrow] (-2,0) -- (10,0);
\node[inner sep=0pt] at (9.7,-0.3) {$\xi$};
% Event horizon
\draw[fill=scarlet!40,opacity=0.2] (-2,-1)--(-\accelRinv,-1)--(-\accelRinv,8)--(-2,8)--(-2,-1);
\node[rotate=90,inner sep=0pt] at (-\accelRinv-0.2,4.0) {Event Horizon of all Frames};
% Draw the worldlines of the other accelerated frames
\foreach \xinit in {1,2,3,4,5,6,7,8,9}
{
\draw[thick,axisarrow,plum] (\xinit,0) -- (\xinit,7);
}
% Add the locations of the proper time for the other Rindler observer
\foreach \xinit in {1,2,3,4,...,9}
{
\pgfmathsetmacro{\accel}{\accelR/(1+\accelR*\xinit)};
\pgfmathsetmacro{\taumax}{\etamax*\accelR/\accel};
\foreach \tau in {0,5,10,15,...,\taumax}
{
\pgfmathsetmacro{\eta}{\accel*\tau/\accelR};
\node[taudot] at ({\xinit},{\eta}) {};
}
}
% Add the acceleration labels
\foreach \xinit in {1,2,3,...,9}
{
\pgfmathsetmacro{\fac}{int(1+\xinit)};
\node[inner sep=0pt] at (\xinit,-0.3) {$1/\fac$};
}
% More labels
\node[inner sep=0pt] at (5,7.3) {Other Rindler Observer Worldlines};
\end{tikzpicture}
\end{document}
@jamesamiller
Copy link
Author

Output figure
fig-RindkerAccelFrame

@jamesamiller
Copy link
Author

Sample caption is given in the source code.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment