Skip to content

Instantly share code, notes, and snippets.

import numpy as np
import random
import matplotlib.pylab as plt
import seaborn as sns
sns.set_style('white')
iters = 100000
sim_result = np.zeros(shape=(iters,1))
for i in range(iters):
@jameslawlor
jameslawlor / batch_generator_for_keras_galaxy_zoo.py
Created July 12, 2017 21:11
batch_generator_for_keras_galaxy_zoo
def BatchGenerator(getter):
while 1:
for f in getter.training_images_paths:
X_train = process_images([getter.train_path + '/' + fname for fname in [f]])
id_ = getter.get_id(f)
y_train = np.array(getter.find_label(id_))
y_train = np.reshape(y_train,(1,37))
yield (X_train, y_train)
@jameslawlor
jameslawlor / image_processing_for_keras_galaxy_zoo.py
Created July 12, 2017 20:04
image_processing_for_keras_galaxy_zoo
def process_images(paths):
count = len(paths)
arr = np.zeros(shape=(count,3,106,106))
for c, path in enumerate(paths):
img = plt.imread(path).T
img = img[:,106:106*3,106:106*3] #crop 424x424 -> 212x212
img = imresize(img,size=(106,106,3),interp="cubic").T # downsample to half res
arr[c] = img
return arr
@jameslawlor
jameslawlor / vgg16_model_for_keras_galaxy_zoo.py
Created July 12, 2017 19:32
VGG16 model for keras galaxy zoo
def ConvBlock(layers, model, filters):
for i in range(layers):
model.add(ZeroPadding2D((1,1))) # zero padding of size 1
model.add(Convolution2D(filters, 3, 3, activation='relu')) # 3x3 filter size
model.add(MaxPooling2D((2,2), strides=(2,2)))
def FCBlock(model):
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))