Created
April 11, 2017 11:45
-
-
Save jblachly/45bae5aada5679c8cb24226de4d0e6bb to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module minkowski; | |
import std.math : abs, pow, sqrt; | |
import std.algorithm; | |
import std.stdio; | |
float minkowski_distance(F)(F[] v1, F[] v2, int p=1) | |
{ | |
// Theoretically the Minkowski distance can be defined for noninteger powers | |
// but I do not want to deal with this right now | |
if (p < 1) throw new Exception("Minkowski distance with p < 1 is not a metric because it violattes the triangle inequality"); | |
assert(v1.length == v2.length); | |
/// I could adopt a "running sum" strategy and compute the sum | |
/// running_sum += pow( abs(x_i - y-i), 2) | |
/// perhaps by first doing all subtractions then all exponentiations | |
/// I can take advantage of pipelining and/or parallelization (future) | |
F[] v3; | |
v3.length = v1.length; | |
for(int i; i<v1.length; i++) { | |
v3[i] = abs( (v1[i] - v2[i]) ); | |
} | |
if(p == 1) { | |
auto sigma = std.algorithm.sum(v3); | |
writeln(sigma); | |
return sigma; | |
} else { | |
auto sigma = std.algorithm.sum( v3.map!(a => pow(a, p)) ); | |
writeln(sigma); | |
return sigma.pow( 1 / cast(float)p ); | |
} | |
} | |
unittest | |
{ | |
float[] v1 = [2, 6]; | |
float[] v2 = [3, 4]; | |
float[] v3 = [3, 8]; | |
float[] v5 = [6, 2]; | |
// Manhattan distance (default) | |
assert(minkowski_distance(v1, v2) == 3); | |
assert(minkowski_distance(v3, v2) == 4); | |
assert(minkowski_distance(v5, v2) == 5); | |
float[] e1 = [0, 0, 0]; | |
float[] e2 = [0, 1, 1]; | |
// Euclidean distance | |
assert(minkowski_distance(e1, e2, 2) == sqrt(2.0)); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment