Skip to content

Instantly share code, notes, and snippets.

@jdiaz5513
Last active December 30, 2023 02:32
Show Gist options
  • Save jdiaz5513/9218791 to your computer and use it in GitHub Desktop.
Save jdiaz5513/9218791 to your computer and use it in GitHub Desktop.
Console ASCII Art Generator
#! /usr/bin/env python2
# Requires: PIL, colormath
#
# Improved algorithm now automatically crops the image and uses much
# better color matching
from PIL import Image, ImageChops
from colormath.color_conversions import convert_color
from colormath.color_objects import LabColor
from colormath.color_objects import sRGBColor as RGBColor
from colormath.color_diff import delta_e_cmc as cmc
import argparse
import sys
ANSI_CODES = (
'\033[00;30m', # black
'\033[00;31m', # red
'\033[00;32m', # green
'\033[00;33m', # yellow
'\033[00;34m', # blue
'\033[00;35m', # magenta
'\033[00;36m', # cyan
'\033[00;37m', # gray
'\033[01;30m', # dark gray
'\033[01;31m', # bright red
'\033[01;32m', # bright green
'\033[01;33m', # bright yellow
'\033[01;34m', # bright blue
'\033[01;35m', # bright magenta
'\033[01;36m', # bright cyan
'\033[01;37m', # white
)
ANSI_COLORS = (
RGBColor(0, 0, 0), # black
RGBColor(205, 0, 0), # red
RGBColor(0, 205, 0), # green
RGBColor(205, 205, 0), # yellow
RGBColor(0, 0, 238), # blue
RGBColor(205, 0, 205), # magenta
RGBColor(0, 205, 205), # cyan
RGBColor(229, 229, 229), # gray
RGBColor(127, 127, 127), # dark gray
RGBColor(255, 0, 0), # bright red
RGBColor(0, 255, 0), # bright green
RGBColor(255, 255, 0), # bright yellow
RGBColor(92, 92, 255), # bright blue
RGBColor(255, 0, 255), # bright magenta
RGBColor(0, 255, 255), # bright cyan
RGBColor(255, 255, 255), # white
)
ANSI_RESET = '\033[0m'
INFINITY = float('inf')
def closest_ansi_color(color):
# Look up the closest ANSI color
color = RGBColor(*color[:3])
closest_dist = INFINITY
closest_color_index = 0
for i, c in enumerate(ANSI_COLORS):
d = color_distance(c, color)
if d < closest_dist:
closest_dist = d
closest_color_index = i
return ANSI_CODES[closest_color_index]
def color_distance(c1, c2):
# return a value representing a relative distance between two RGB
# color values, weighted for human eye sensitivity
cl1 = convert_color(c1, LabColor)
cl2 = convert_color(c2, LabColor)
return cmc(cl1, cl2, pl=1, pc=1)
# return (math.pow((c2[0] - c1[0]) * 0.30, 2) +
# math.pow((c2[1] - c1[1]) * 0.49, 2) +
# math.pow((c2[2] - c1[2]) * 0.21, 2))
def convert_image(filename, output_file, fill_char='##'):
# render an image as ASCII by converting it to RGBA then using the
# color lookup table to find the closest colors, then filling with
# fill_char
# TODO: use a set of fill characters and choose among them based on
# color value
im = Image.open(filename)
if im.mode != 'RGBA':
im = im.convert('RGBA')
# crop the image
bg = Image.new(im.mode, im.size, im.getpixel((0,0)))
diff = ImageChops.difference(im, bg)
diff = ImageChops.add(diff, diff, 2.0, -100)
bbox = diff.getbbox()
if bbox:
im = im.crop(bbox)
w = im.size[0]
o = ''
last_color = None
for i, p in enumerate(im.getdata()):
if i % w == 0:
o += '\n'
if im.mode == 'RGBA' and p[3] == 0:
o += ' ' * len(fill_char)
else:
c = closest_ansi_color(p)
if last_color != c:
o += c
last_color = c
o += fill_char
o += ANSI_RESET + '\n\n'
if output_file is not sys.stdout:
output_file = open(output_file, 'w')
output_file.write(o)
output_file.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('filename', help='File to convert to ASCII art')
parser.add_argument('-o', '--output_file', nargs='?', default=sys.stdout,
help='Path to the output file, defaults to stdout')
parser.add_argument('-f', '--fill_char', nargs='?', default='##',
help='Character to use for solid pixels in the image')
args = parser.parse_args()
convert_image(args.filename, args.output_file, fill_char=args.fill_char)
@ncanceill
Copy link

Just ended up here from your post about naming computers, and I wonder how this distinguishes from https://github.com/jhchen/ansize (except from the fact that Go is not the same as Python).

@jimmykane
Copy link

@ncancell I ended up here as well from the same post. I prefer the name python. :-p

For me distinguishes much better because I managed to intergrate this approach with multiprocessing and cluster this script at the same time with provisioning plus adding on the repo a small png file. So yhea, why should a vanilla server install go just for some graphics?

@ncanceill
Copy link

@jimmykane Good point, Python indeed ships by default with many distributions!

@Kirkman
Copy link

Kirkman commented May 4, 2016

This is really cool. Just a thought: It is quite slow right now, but you could dramatically speed things up by caching the results of color_distance() lookups. Performing those calculations for every pixel is really expensive.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment