Last active
November 22, 2024 07:17
-
-
Save jeasinema/ed9236ce743c8efaf30fa2ff732749f5 to your computer and use it in GitHub Desktop.
A simple script for parameter initialization for PyTorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding:UTF-8 -*- | |
import torch | |
import torch.nn as nn | |
import torch.nn.init as init | |
def weight_init(m): | |
''' | |
Usage: | |
model = Model() | |
model.apply(weight_init) | |
''' | |
if isinstance(m, nn.Conv1d): | |
init.normal_(m.weight.data) | |
if m.bias is not None: | |
init.normal_(m.bias.data) | |
elif isinstance(m, nn.Conv2d): | |
init.xavier_normal_(m.weight.data) | |
if m.bias is not None: | |
init.normal_(m.bias.data) | |
elif isinstance(m, nn.Conv3d): | |
init.xavier_normal_(m.weight.data) | |
if m.bias is not None: | |
init.normal_(m.bias.data) | |
elif isinstance(m, nn.ConvTranspose1d): | |
init.normal_(m.weight.data) | |
if m.bias is not None: | |
init.normal_(m.bias.data) | |
elif isinstance(m, nn.ConvTranspose2d): | |
init.xavier_normal_(m.weight.data) | |
if m.bias is not None: | |
init.normal_(m.bias.data) | |
elif isinstance(m, nn.ConvTranspose3d): | |
init.xavier_normal_(m.weight.data) | |
if m.bias is not None: | |
init.normal_(m.bias.data) | |
elif isinstance(m, nn.BatchNorm1d): | |
init.normal_(m.weight.data, mean=1, std=0.02) | |
init.constant_(m.bias.data, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
init.normal_(m.weight.data, mean=1, std=0.02) | |
init.constant_(m.bias.data, 0) | |
elif isinstance(m, nn.BatchNorm3d): | |
init.normal_(m.weight.data, mean=1, std=0.02) | |
init.constant_(m.bias.data, 0) | |
elif isinstance(m, nn.Linear): | |
init.xavier_normal_(m.weight.data) | |
init.normal_(m.bias.data) | |
elif isinstance(m, nn.LSTM): | |
for param in m.parameters(): | |
if len(param.shape) >= 2: | |
init.orthogonal_(param.data) | |
else: | |
init.normal_(param.data) | |
elif isinstance(m, nn.LSTMCell): | |
for param in m.parameters(): | |
if len(param.shape) >= 2: | |
init.orthogonal_(param.data) | |
else: | |
init.normal_(param.data) | |
elif isinstance(m, nn.GRU): | |
for param in m.parameters(): | |
if len(param.shape) >= 2: | |
init.orthogonal_(param.data) | |
else: | |
init.normal_(param.data) | |
elif isinstance(m, nn.GRUCell): | |
for param in m.parameters(): | |
if len(param.shape) >= 2: | |
init.orthogonal_(param.data) | |
else: | |
init.normal_(param.data) | |
if __name__ == '__main__': | |
pass |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment