-
-
Save jef5ez/f17f3d98fb2c52e8b336b074fe0c55ce to your computer and use it in GitHub Desktop.
keras th ordering
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
val model = KerasModelImport.importKerasSequentialModelAndWeights( | |
"/opt/devel/src/hannibal/hannibal-python/ecoa/keras4j.json", | |
"/opt/devel/src/hannibal/hannibal-python/ecoa/keras4j.h5") | |
val (trackLength, vectorDim, groupSize) = (30, 2, 8) | |
val o = Array.fill(trackLength * vectorDim * groupSize)(1.0) | |
val ones = Nd4j.create(o, Array(1, groupSize, vectorDim, trackLength)) | |
val oneOut = model.output(ones) | |
// [0.41, 0.40, 0.19] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
In dl4j: | |
scala> println(res8.getRow(0)) | |
[[[-0.01, -0.06, 0.01, 0.07, -0.01, 0.09, 0.08, 0.05, -0.02, -0.00], | |
[-0.07, 0.05, 0.02, -0.07, 0.07, 0.00, 0.01, 0.07, -0.03, 0.08]], | |
[[0.05, 0.07, -0.00, 0.01, 0.01, -0.04, -0.04, 0.08, 0.07, -0.07], | |
[-0.03, -0.01, 0.07, 0.08, -0.01, 0.04, -0.00, 0.02, -0.05, 0.05]], | |
[[0.01, 0.02, -0.05, 0.02, -0.07, -0.07, -0.06, -0.00, 0.03, 0.05], | |
[-0.06, 0.06, -0.00, 0.02, -0.04, -0.00, 0.07, -0.03, -0.03, -0.06]], | |
[[0.08, -0.08, -0.08, -0.01, -0.02, 0.02, 0.01, 0.02, 0.00, -0.06], | |
[0.08, -0.03, -0.08, -0.03, 0.08, 0.02, 0.02, 0.04, 0.07, -0.02]], | |
[[0.06, -0.07, 0.04, 0.01, 0.06, -0.05, 0.07, 0.06, 0.02, -0.05], | |
[-0.01, 0.03, -0.02, 0.05, -0.02, -0.05, -0.07, 0.03, 0.08, -0.05]], | |
[[-0.02, 0.07, 0.05, 0.04, -0.08, -0.05, -0.03, 0.02, -0.04, -0.08], | |
[-0.03, -0.02, 0.01, -0.03, 0.03, -0.01, 0.05, 0.03, 0.00, -0.05]], | |
[[-0.07, 0.01, -0.06, -0.05, -0.00, 0.04, -0.02, -0.03, -0.07, 0.01], | |
[-0.04, 0.07, -0.04, 0.06, 0.08, -0.03, -0.04, -0.02, 0.04, -0.02]], | |
[[0.08, 0.04, -0.08, -0.04, 0.03, 0.07, 0.07, -0.04, -0.03, 0.07], | |
[-0.05, -0.01, 0.04, -0.08, 0.06, 0.07, -0.02, -0.02, -0.05, -0.01]]] | |
In Python: | |
print model.get_weights()[0][0] | |
[[[ 0.07676533 -0.03117377 0.06891505 0.00826494 0.00290956 0.07187851 | |
-0.07164567 0.0169886 0.05354632 -0.06551674] | |
[-0.00348628 -0.01874308 0.05135714 0.08106387 0.08658282 -0.0125316 | |
0.07233612 0.00676258 -0.0583616 -0.00871787]] | |
[[ 0.05433306 -0.05441435 0.01570591 -0.00498693 0.04137021 -0.00683805 | |
0.08082487 0.07156506 -0.00727309 -0.03086448] | |
[-0.07242365 0.06931256 0.07738896 -0.03929505 -0.03519952 0.01477922 | |
0.00650515 -0.00138164 0.06599145 0.0548986 ]] | |
[[-0.06366576 -0.02515704 -0.03476964 0.0700172 -0.00052914 -0.03933529 | |
0.02269914 -0.00237731 0.06332166 -0.05861359] | |
[ 0.05349948 0.02544831 -0.00453325 -0.05656359 -0.06786122 -0.07119821 | |
0.02357902 -0.04714607 0.01953493 0.00579332]] | |
[[-0.01521546 0.07284176 0.04143168 0.02168714 0.02437495 0.08211306 | |
-0.02770139 -0.08141261 -0.02879204 0.07727191] | |
[-0.06016762 0.00331838 0.01770175 0.01325131 0.01809193 -0.02122333 | |
-0.01375933 -0.07907184 -0.07925276 0.08340394]] | |
[[-0.04790336 0.08006929 0.03018796 -0.07247118 -0.04933546 -0.02051881 | |
0.04873452 -0.01753233 0.03327365 -0.01034204] | |
[-0.04579724 0.01649789 0.05555908 0.0725324 -0.04999334 0.06409916 | |
0.01181215 0.04371393 -0.06629309 0.05552076]] | |
[[-0.05160485 0.00228648 0.02856116 0.04772033 -0.01463272 0.02620524 | |
-0.02530901 0.01186486 -0.01923612 -0.03276508] | |
[-0.07548475 -0.04069661 0.02406996 -0.0337285 -0.05363468 -0.07712238 | |
0.03820712 0.04714371 0.06748833 -0.02 ]] | |
[[-0.01733848 0.03871317 -0.01713949 -0.03550589 -0.02539484 0.08202767 | |
0.06316736 -0.03533741 0.06995845 -0.04261048] | |
[ 0.00951921 -0.06653412 -0.03266657 -0.01623273 0.03671551 -0.00367464 | |
-0.04966186 -0.05797498 0.00909566 -0.06771586]] | |
[[-0.00626809 -0.05195602 -0.01752971 -0.02099497 0.0686373 0.06118456 | |
-0.07832465 0.03741774 -0.01404193 -0.04903556] | |
[ 0.06766865 -0.02603962 -0.03748363 0.07432315 0.06585176 0.03124297 | |
-0.03805119 -0.0758684 0.04481697 0.08070454]]] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation, Flatten | |
from keras.layers.convolutional import Convolution2D, Convolution3D | |
from keras.optimizers import RMSprop, Adadelta | |
groupSize = 8 | |
vectorDim = 2 | |
trackLength = 30 | |
model = Sequential() | |
model.add(Convolution2D(32, 2, 10, border_mode='same', dim_ordering='th', input_shape=(groupSize, vectorDim, trackLength))) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(16, 2, 5, border_mode='same', dim_ordering='th')) | |
model.add(Activation('relu')) | |
model.add(Flatten()) | |
model.add(Dense(128)) | |
model.add(Dense(3)) | |
model.add(Activation('softmax')) | |
optim = RMSprop() | |
# optim = Adadelta() | |
model.compile(loss='categorical_crossentropy', optimizer=optim) | |
model.predict_proba(np.ones((1, groupSize, vectorDim, trackLength))) | |
#array([[ 0.45079258, 0.24883677, 0.30037063]], dtype=float32) | |
model_json = model.to_json() | |
with open("keras4j.json", "w") as json_file: | |
json_file.write(model_json) | |
# serialize weights to HDF5 | |
model.save_weights("keras4j.h5") | |
print("Saved model to disk") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
In dl4j: | |
Map(W -> [[0.14, 0.12, -0.16], | |
[-0.04, 0.15, 0.02], | |
[-0.16, -0.06, -0.07], | |
[-0.13, -0.14, -0.07], | |
[0.19, 0.09, 0.09], | |
[-0.11, -0.13, 0.12], | |
[-0.00, 0.05, -0.06], | |
[-0.19, 0.17, -0.11], | |
... | |
In Python: | |
[[ 1.38035819e-01 1.24384061e-01 -1.55227304e-01] | |
[ -3.71695161e-02 1.51023373e-01 2.41503268e-02] | |
[ -1.59801364e-01 -5.85760027e-02 -6.58198148e-02] | |
[ -1.26131564e-01 -1.43218338e-01 -7.05740899e-02] | |
[ 1.93560138e-01 8.63352865e-02 9.10301656e-02] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
17/05/18 16:56:22 WARN reflections.Reflections: could not create Vfs.Dir from url. ignoring the exception and continuing | |
org.reflections.ReflectionsException: could not create Vfs.Dir from url, no matching UrlType was found [file:/opt/devel/src/expeditionary-warfare/exw-app/target/test-classes] | |
either use fromURL(final URL url, final List<UrlType> urlTypes) or use the static setDefaultURLTypes(final List<UrlType> urlTypes) or addDefaultURLTypes(UrlType urlType) with your specialized UrlType. | |
at org.reflections.vfs.Vfs.fromURL(Vfs.java:109) | |
at org.reflections.vfs.Vfs.fromURL(Vfs.java:91) | |
at org.reflections.Reflections.scan(Reflections.java:237) | |
at org.reflections.Reflections.scan(Reflections.java:204) | |
at org.reflections.Reflections.<init>(Reflections.java:129) | |
at org.deeplearning4j.nn.conf.NeuralNetConfiguration.registerSubtypes(NeuralNetConfiguration.java:431) | |
at org.deeplearning4j.nn.conf.NeuralNetConfiguration.configureMapper(NeuralNetConfiguration.java:386) | |
at org.deeplearning4j.nn.conf.NeuralNetConfiguration.initMapper(NeuralNetConfiguration.java:376) | |
at org.deeplearning4j.nn.conf.NeuralNetConfiguration.<clinit>(NeuralNetConfiguration.java:123) | |
at org.deeplearning4j.nn.conf.NeuralNetConfiguration$Builder.build(NeuralNetConfiguration.java:1019) | |
at org.deeplearning4j.nn.conf.NeuralNetConfiguration$ListBuilder.build(NeuralNetConfiguration.java:269) | |
at org.deeplearning4j.nn.modelimport.keras.KerasSequentialModel.getMultiLayerConfiguration(KerasSequentialModel.java:203) | |
at org.deeplearning4j.nn.modelimport.keras.KerasSequentialModel.getMultiLayerNetwork(KerasSequentialModel.java:224) | |
at org.deeplearning4j.nn.modelimport.keras.KerasSequentialModel.getMultiLayerNetwork(KerasSequentialModel.java:213) | |
at org.deeplearning4j.nn.modelimport.keras.KerasModelImport.importKerasSequentialModelAndWeights(KerasModelImport.java:236) | |
at $line12.$read$$iw$$iw$$iw$$iw$.<init>(<console>:21) | |
at $line12.$read$$iw$$iw$$iw$$iw$.<clinit>(<console>) | |
at $line12.$eval$.$print$lzycompute(<console>:7) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment