Skip to content

Instantly share code, notes, and snippets.

View jeoncs's full-sized avatar

jeon jeoncs

  • Seoul
View GitHub Profile
# 모델에 쓸 파라미터를 정의
params = {
'num_classes': num_classes, # 카테고리 수
'log_path': 'log/', # 로그 파일 저장 경로
'cp_path': 'checkpoint/', # 모델 체크포인트 저장 경로
'model_path': 'model/', # 최종 모델 저장 경로
'mode': 'fe', # 훈련 모드 (fe: feature extraction, ft: finetuning)
'lr': 0.001, # learning rate
'epoch': 10, # 훈련 epoch
'network_params': { # applications 모듈로 불러들일 네트워크 파라미터
from tensorflow.python.keras.metrics import top_k_categorical_accuracy
from tensorflow.python.keras.optimizers import Adam
from sklearn.utils.class_weight import compute_class_weight
class Model():
...
def train(self):
if self.trained == True:
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
TRAIN_PATH = "training/"
batch_size = 128
input_shape = (224, 224)
datagen = ImageDatagenerator(rescale=1./255, validation_split=0.1)
generator_train = datagen.flow_from_directory(directory=TRAIN_PATH,
target_size=input_shape,
@jeoncs
jeoncs / applications.py
Last active December 27, 2018 05:09
keras applications
from tensorflow.python.keras.applications import InceptionV3, Xception
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, GlobalAveragePooling2D
class Model():
def __init__(self, name, class_weight, params):
assert name != '', "Model name needs to be specified"
self.name = name
self.trained = False