Skip to content

Instantly share code, notes, and snippets.

@jeremybk21
Created March 30, 2023 14:41
Show Gist options
  • Save jeremybk21/cafafbbf541d8bbbbf2a47420bc33a4c to your computer and use it in GitHub Desktop.
Save jeremybk21/cafafbbf541d8bbbbf2a47420bc33a4c to your computer and use it in GitHub Desktop.
Exact same as OpenAI Gymnasium cartpole environment except with a continuous action space. Good for learning control methods other than RL.
"""
Classic cart-pole system implemented by Rich Sutton et al.
Copied from http://incompleteideas.net/sutton/book/code/pole.c
permalink: https://perma.cc/C9ZM-652R
"""
import math
from typing import Optional, Tuple, Union
import numpy as np
import gymnasium as gym
from gymnasium import logger, spaces
from gymnasium.envs.classic_control import utils
from gymnasium.error import DependencyNotInstalled
from gymnasium.experimental.vector import VectorEnv
from gymnasium.vector.utils import batch_space
class ContinuousActionCartPoleEnv(gym.Env[np.ndarray, Union[int, np.ndarray]]):
"""
## Description
This environment corresponds to the version of the cart-pole problem described by Barto, Sutton, and Anderson in
["Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problem"](https://ieeexplore.ieee.org/document/6313077).
A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track.
The pendulum is placed upright on the cart and the goal is to balance the pole by applying forces
in the left and right direction on the cart.
## Action Space
The action is a `ndarray` with shape `(1,)` which can take values `{0, 1}` indicating the direction
of the fixed force the cart is pushed with.
- 0: Push cart to the left
- 1: Push cart to the right
**Note**: The velocity that is reduced or increased by the applied force is not fixed and it depends on the angle
the pole is pointing. The center of gravity of the pole varies the amount of energy needed to move the cart underneath it
## Observation Space
The observation is a `ndarray` with shape `(4,)` with the values corresponding to the following positions and velocities:
| Num | Observation | Min | Max |
|-----|-----------------------|---------------------|-------------------|
| 0 | Cart Position | -4.8 | 4.8 |
| 1 | Cart Velocity | -Inf | Inf |
| 2 | Pole Angle | ~ -0.418 rad (-24°) | ~ 0.418 rad (24°) |
| 3 | Pole Angular Velocity | -Inf | Inf |
**Note:** While the ranges above denote the possible values for observation space of each element,
it is not reflective of the allowed values of the state space in an unterminated episode. Particularly:
- The cart x-position (index 0) can be take values between `(-4.8, 4.8)`, but the episode terminates
if the cart leaves the `(-2.4, 2.4)` range.
- The pole angle can be observed between `(-.418, .418)` radians (or **±24°**), but the episode terminates
if the pole angle is not in the range `(-.2095, .2095)` (or **±12°**)
## Rewards
Since the goal is to keep the pole upright for as long as possible, a reward of `+1` for every step taken,
including the termination step, is allotted. The threshold for rewards is 475 for v1.
## Starting State
All observations are assigned a uniformly random value in `(-0.05, 0.05)`
## Episode End
The episode ends if any one of the following occurs:
1. Termination: Pole Angle is greater than ±12°
2. Termination: Cart Position is greater than ±2.4 (center of the cart reaches the edge of the display)
3. Truncation: Episode length is greater than 500 (200 for v0)
## Arguments
```python
import gymnasium as gym
gym.make('CartPole-v1')
```
On reset, the `options` parameter allows the user to change the bounds used to determine
the new random state.
"""
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": 50,
}
def __init__(self, render_mode: Optional[str] = None):
self.gravity = 9.8
self.masscart = 1.0
self.masspole = 0.1
self.total_mass = self.masspole + self.masscart
self.length = 0.5 # actually half the pole's length
self.polemass_length = self.masspole * self.length
self.force_mag = 10.0
self.tau = 0.02 # seconds between state updates
self.kinematics_integrator = "euler"
self.min_action = -np.inf
self.max_action = np.inf
# Angle at which to fail the episode
self.theta_threshold_radians = 720 * 2 * math.pi / 360
self.x_threshold = 2.4
# Angle limit set to 2 * theta_threshold_radians so failing observation
# is still within bounds.
high = np.array(
[
self.x_threshold * 2,
np.finfo(np.float32).max,
self.theta_threshold_radians * 2,
np.finfo(np.float32).max,
],
dtype=np.float32,
)
self.action_space = spaces.Box(
low=self.min_action,
high=self.max_action,
shape=(),
dtype=np.float32,
)
self.observation_space = spaces.Box(-high, high, dtype=np.float32)
self.render_mode = render_mode
self.screen_width = 600
self.screen_height = 400
self.screen = None
self.clock = None
self.isopen = True
self.state = None
self.steps_beyond_terminated = None
def step(self, action):
assert self.action_space.contains(action), \
"%r (%s) invalid" % (action, type(action))
assert self.state is not None, "Call reset before using step method."
x, x_dot, theta, theta_dot = self.state
force = self.force_mag * float(action)
costheta = math.cos(theta)
sintheta = math.sin(theta)
# For the interested reader:
# https://coneural.org/florian/papers/05_cart_pole.pdf
temp = (
force + self.polemass_length * theta_dot**2 * sintheta
) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta * temp) / (
self.length * (4.0 / 3.0 - self.masspole * costheta**2 / self.total_mass)
)
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
if self.kinematics_integrator == "euler":
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
else: # semi-implicit euler
x_dot = x_dot + self.tau * xacc
x = x + self.tau * x_dot
theta_dot = theta_dot + self.tau * thetaacc
theta = theta + self.tau * theta_dot
self.state = (x, x_dot, theta, theta_dot)
terminated = bool(
x < -self.x_threshold
or x > self.x_threshold
or theta < -self.theta_threshold_radians
or theta > self.theta_threshold_radians
)
if not terminated:
reward = 1.0
elif self.steps_beyond_terminated is None:
# Pole just fell!
self.steps_beyond_terminated = 0
reward = 1.0
else:
if self.steps_beyond_terminated == 0:
logger.warn(
"You are calling 'step()' even though this "
"environment has already returned terminated = True. You "
"should always call 'reset()' once you receive 'terminated = "
"True' -- any further steps are undefined behavior."
)
self.steps_beyond_terminated += 1
reward = 0.0
if self.render_mode == "human":
self.render()
return np.array(self.state, dtype=np.float32), reward, terminated, False, {}
def reset(
self,
*,
seed: Optional[int] = None,
options: Optional[dict] = None,
):
super().reset(seed=seed)
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
low, high = utils.maybe_parse_reset_bounds(
options, -0.05, 0.05 # default low
) # default high
self.state = self.np_random.uniform(low=low, high=high, size=(4,))
self.steps_beyond_terminated = None
if self.render_mode == "human":
self.render()
return np.array(self.state, dtype=np.float32), {}
def render(self):
if self.render_mode is None:
assert self.spec is not None
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym.make("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError as e:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gymnasium[classic-control]`"
) from e
if self.screen is None:
pygame.init()
if self.render_mode == "human":
pygame.display.init()
self.screen = pygame.display.set_mode(
(self.screen_width, self.screen_height)
)
else: # mode == "rgb_array"
self.screen = pygame.Surface((self.screen_width, self.screen_height))
if self.clock is None:
self.clock = pygame.time.Clock()
world_width = self.x_threshold * 2
scale = self.screen_width / world_width
polewidth = 10.0
polelen = scale * (2 * self.length)
cartwidth = 50.0
cartheight = 30.0
if self.state is None:
return None
x = self.state
self.surf = pygame.Surface((self.screen_width, self.screen_height))
self.surf.fill((255, 255, 255))
l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2
axleoffset = cartheight / 4.0
cartx = x[0] * scale + self.screen_width / 2.0 # MIDDLE OF CART
carty = 100 # TOP OF CART
cart_coords = [(l, b), (l, t), (r, t), (r, b)]
cart_coords = [(c[0] + cartx, c[1] + carty) for c in cart_coords]
gfxdraw.aapolygon(self.surf, cart_coords, (0, 0, 0))
gfxdraw.filled_polygon(self.surf, cart_coords, (0, 0, 0))
l, r, t, b = (
-polewidth / 2,
polewidth / 2,
polelen - polewidth / 2,
-polewidth / 2,
)
pole_coords = []
for coord in [(l, b), (l, t), (r, t), (r, b)]:
coord = pygame.math.Vector2(coord).rotate_rad(-x[2])
coord = (coord[0] + cartx, coord[1] + carty + axleoffset)
pole_coords.append(coord)
gfxdraw.aapolygon(self.surf, pole_coords, (202, 152, 101))
gfxdraw.filled_polygon(self.surf, pole_coords, (202, 152, 101))
gfxdraw.aacircle(
self.surf,
int(cartx),
int(carty + axleoffset),
int(polewidth / 2),
(129, 132, 203),
)
gfxdraw.filled_circle(
self.surf,
int(cartx),
int(carty + axleoffset),
int(polewidth / 2),
(129, 132, 203),
)
gfxdraw.hline(self.surf, 0, self.screen_width, carty, (0, 0, 0))
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if self.render_mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
elif self.render_mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
class CartPoleVectorEnv(VectorEnv):
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": 50,
}
def __init__(
self,
num_envs: int = 2,
max_episode_steps: int = 500,
render_mode: Optional[str] = None,
):
super().__init__()
self.num_envs = num_envs
self.gravity = 9.8
self.masscart = 1.0
self.masspole = 0.1
self.total_mass = self.masspole + self.masscart
self.length = 0.5 # actually half the pole's length
self.polemass_length = self.masspole * self.length
self.force_mag = 10.0
self.tau = 0.002 # seconds between state updates
self.kinematics_integrator = "euler"
self.max_episode_steps = max_episode_steps
self.steps = np.zeros(num_envs, dtype=np.int32)
# Angle at which to fail the episode
self.theta_threshold_radians = 12 * 2 * math.pi / 360
self.x_threshold = 2.4
# Angle limit set to 2 * theta_threshold_radians so failing observation
# is still within bounds.
high = np.array(
[
self.x_threshold * 2,
np.finfo(np.float32).max,
self.theta_threshold_radians * 2,
np.finfo(np.float32).max,
],
dtype=np.float32,
)
self.low = -0.05
self.high = 0.05
self.action_space = batch_space(spaces.Discrete(2), num_envs)
self.observation_space = batch_space(
spaces.Box(-high, high, dtype=np.float32), num_envs
)
self.render_mode = render_mode
self.screen_width = 600
self.screen_height = 400
self.screens = None
self.clocks = None
self.isopen = True
self.state = None
self.steps_beyond_terminated = None
def step(
self, action: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, dict]:
assert self.action_space.contains(
action
), f"{action!r} ({type(action)}) invalid"
assert self.state is not None, "Call reset before using step method."
x, x_dot, theta, theta_dot = self.state
force = np.sign(action - 0.5) * self.force_mag
costheta = np.cos(theta)
sintheta = np.sin(theta)
# For the interested reader:
# https://coneural.org/florian/papers/05_cart_pole.pdf
temp = (
force + self.polemass_length * theta_dot**2 * sintheta
) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta * temp) / (
self.length * (4.0 / 3.0 - self.masspole * costheta**2 / self.total_mass)
)
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
if self.kinematics_integrator == "euler":
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
else: # semi-implicit euler
x_dot = x_dot + self.tau * xacc
x = x + self.tau * x_dot
theta_dot = theta_dot + self.tau * thetaacc
theta = theta + self.tau * theta_dot
self.state = np.stack((x, x_dot, theta, theta_dot))
terminated: np.ndarray = (
(x < -self.x_threshold)
| (x > self.x_threshold)
| (theta < -self.theta_threshold_radians)
| (theta > self.theta_threshold_radians)
)
self.steps += 1
truncated = self.steps >= self.max_episode_steps
done = terminated | truncated
if any(done):
# This code was generated by copilot, need to check if it works
self.state[:, done] = self.np_random.uniform(
low=self.low, high=self.high, size=(4, done.sum())
).astype(np.float32)
self.steps[done] = 0
reward = np.ones_like(terminated, dtype=np.float32)
if self.render_mode == "human":
self.render()
return self.state.T, reward, terminated, truncated, {}
def reset(
self,
*,
seed: Optional[int] = None,
options: Optional[dict] = None,
):
super().reset(seed=seed)
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
self.low, self.high = utils.maybe_parse_reset_bounds(
options, -0.05, 0.05 # default low
) # default high
self.state = self.np_random.uniform(
low=self.low, high=self.high, size=(4, self.num_envs)
).astype(np.float32)
self.steps_beyond_terminated = None
if self.render_mode == "human":
self.render()
return self.state.T, {}
def render(self):
if self.render_mode is None:
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gymnasium[classic_control]`"
)
if self.screens is None:
pygame.init()
if self.render_mode == "human":
pygame.display.init()
self.screens = [
pygame.display.set_mode((self.screen_width, self.screen_height))
for _ in range(self.num_envs)
]
else: # mode == "rgb_array"
self.screens = [
pygame.Surface((self.screen_width, self.screen_height))
for _ in range(self.num_envs)
]
if self.clocks is None:
self.clock = [pygame.time.Clock() for _ in range(self.num_envs)]
world_width = self.x_threshold * 2
scale = self.screen_width / world_width
polewidth = 10.0
polelen = scale * (2 * self.length)
cartwidth = 50.0
cartheight = 30.0
if self.state is None:
return None
for state, screen, clock in zip(self.state, self.screens, self.clocks):
x = self.state.T
self.surf = pygame.Surface((self.screen_width, self.screen_height))
self.surf.fill((255, 255, 255))
l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2
axleoffset = cartheight / 4.0
cartx = x[0] * scale + self.screen_width / 2.0 # MIDDLE OF CART
carty = 100 # TOP OF CART
cart_coords = [(l, b), (l, t), (r, t), (r, b)]
cart_coords = [(c[0] + cartx, c[1] + carty) for c in cart_coords]
gfxdraw.aapolygon(self.surf, cart_coords, (0, 0, 0))
gfxdraw.filled_polygon(self.surf, cart_coords, (0, 0, 0))
l, r, t, b = (
-polewidth / 2,
polewidth / 2,
polelen - polewidth / 2,
-polewidth / 2,
)
pole_coords = []
for coord in [(l, b), (l, t), (r, t), (r, b)]:
coord = pygame.math.Vector2(coord).rotate_rad(-x[2])
coord = (coord[0] + cartx, coord[1] + carty + axleoffset)
pole_coords.append(coord)
gfxdraw.aapolygon(self.surf, pole_coords, (202, 152, 101))
gfxdraw.filled_polygon(self.surf, pole_coords, (202, 152, 101))
gfxdraw.aacircle(
self.surf,
int(cartx),
int(carty + axleoffset),
int(polewidth / 2),
(129, 132, 203),
)
gfxdraw.filled_circle(
self.surf,
int(cartx),
int(carty + axleoffset),
int(polewidth / 2),
(129, 132, 203),
)
gfxdraw.hline(self.surf, 0, self.screen_width, carty, (0, 0, 0))
self.surf = pygame.transform.flip(self.surf, False, True)
screen.blit(self.surf, (0, 0))
if self.render_mode == "human":
pygame.event.pump()
[clock.tick(self.metadata["render_fps"]) for clock in self.clocks]
pygame.display.flip()
elif self.render_mode == "rgb_array":
return [
np.transpose(
np.array(pygame.surfarray.pixels3d(screen)), axes=(1, 0, 2)
)
for screen in self.screens
]
def close(self):
if self.screens is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment