Created
July 27, 2012 19:21
-
-
Save jerluc/3189968 to your computer and use it in GitHub Desktop.
Brand Recommendation Prototype Using Scalding
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import com.twitter.scalding._ | |
import scala.util.matching.Regex | |
class BrandRecommandation(args : Args) extends Job(args) { | |
val brandData = Tsv(args("input"), ('userId, 'brandId, 'interactions)) | |
val brandIncidence = brandData.groupBy('brandId) { _.size } rename { 'size -> 'brandIncidence } | |
val brandDataWithIncidence = brandData.joinWithSmaller('brandId -> 'brandId, brandIncidence) | |
val brandDataWithIncidence2 = brandDataWithIncidence.rename(('userId, 'brandId, 'interactions, 'brandIncidence) -> ('userId2, 'brandId2, 'interactions2, 'brandIncidence2)) | |
val correlations = | |
brandDataWithIncidence | |
.joinWithSmaller('userId -> 'userId2, brandDataWithIncidence2) | |
.filter('brandId, 'brandId2) { brands: (Double, Double) => brands._1 < brands._2 } | |
.project(('brandId, 'interactions, 'brandIncidence, 'brandId2, 'interactions2, 'brandIncidence2)) | |
.map(('interactions, 'interactions2) -> ('interactionsProd, 'interactionsSq, 'interactions2Sq)) { | |
interactions: (Int, Int) => (interactions._1 * interactions._2, math.pow(interactions._1, 2), math.pow(interactions._2, 2)) | |
} | |
.groupBy('brandId, 'brandId2) { group => | |
group.size | |
.sum('interactionsProd -> 'dotProduct) | |
.sum('interactions -> 'interactionsSum) | |
.sum('interactions2 -> 'interactions2Sum) | |
.sum('interactionsSq -> 'interactionsNormSq) | |
.sum('interactions2Sq -> 'interactions2NormSq) | |
.max('brandIncidence) | |
.max('brandIncidence2) | |
} | |
.map(('size, 'dotProduct, 'interactionsSum, 'interactions2Sum, 'interactionsNormSq, 'interactions2NormSq) -> 'correlation) { | |
fields: (Double, Double, Double, Double, Double, Double) => correlation(fields._1, fields._2, fields._3, fields._4, fields._5, fields._6) | |
} | |
def correlation(size: Double, dotProduct: Double, interactionsSum: Double, interactions2Sum: Double, interactionsNormSq: Double, interactions2NormSq: Double) = { | |
(size * dotProduct - interactionsSum * interactions2Sum) / math.sqrt(size * interactionsNormSq - interactionsSum * interactionsSum) * math.sqrt(size * interactions2NormSq - interactions2Sum * interactions2Sum) | |
} | |
correlations.write(Tsv(args("output"))) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment