Skip to content

Instantly share code, notes, and snippets.

@jessevanherk
Created December 9, 2015 01:16
Show Gist options
  • Save jessevanherk/e5c2faa9d4d6a594a69f to your computer and use it in GitHub Desktop.
Save jessevanherk/e5c2faa9d4d6a594a69f to your computer and use it in GitHub Desktop.
direct implementation of simplex and perlin noise in C, no optimizations, allowing for speed comparison.
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int grad3[12][3] = {{1,1,0},{-1,1,0},{1,-1,0},{-1,-1,0},
{1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1},
{0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1}};
int p[] = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};
int perm[512];
/* This method is a *lot* faster than using (int)Math.floor(x) */
int fastfloor(double x) {
return x>0 ? (int)x : (int)x-1;
}
double dot2d(int g[3], double x, double y) {
return g[0]*x + g[1]*y;
}
double dot3d(int g[3], double x, double y, double z) {
return g[0]*x + g[1]*y + g[2]*z;
}
double mix(double a, double b, double t) {
return (1-t)*a + t*b;
}
double fade(double t) {
return t*t*t*(t*(t*6-15)+10);
}
/* Classic Perlin noise, 3D version */
double classic_noise(double x, double y, double z) {
/* Find unit grid cell containing point */
int X = fastfloor(x);
int Y = fastfloor(y);
int Z = fastfloor(z);
/* Get relative xyz coordinates of point within that cell */
x = x - X;
y = y - Y;
z = z - Z;
/* Wrap the integer cells at 255 (smaller integer period can be introduced here) */
X = X & 255;
Y = Y & 255;
Z = Z & 255;
/* Calculate a set of eight hashed gradient indices */
int gi000 = perm[X+perm[Y+perm[Z]]] % 12;
int gi001 = perm[X+perm[Y+perm[Z+1]]] % 12;
int gi010 = perm[X+perm[Y+1+perm[Z]]] % 12;
int gi011 = perm[X+perm[Y+1+perm[Z+1]]] % 12;
int gi100 = perm[X+1+perm[Y+perm[Z]]] % 12;
int gi101 = perm[X+1+perm[Y+perm[Z+1]]] % 12;
int gi110 = perm[X+1+perm[Y+1+perm[Z]]] % 12;
int gi111 = perm[X+1+perm[Y+1+perm[Z+1]]] % 12;
/* The gradients of each corner are now:
* g000 = grad3[gi000];
* g001 = grad3[gi001];
* g010 = grad3[gi010];
* g011 = grad3[gi011];
* g100 = grad3[gi100];
* g101 = grad3[gi101];
* g110 = grad3[gi110];
* g111 = grad3[gi111]; */
/* Calculate noise contributions from each of the eight corners */
double n000= dot3d(grad3[gi000], x, y, z);
double n100= dot3d(grad3[gi100], x-1, y, z);
double n010= dot3d(grad3[gi010], x, y-1, z);
double n110= dot3d(grad3[gi110], x-1, y-1, z);
double n001= dot3d(grad3[gi001], x, y, z-1);
double n101= dot3d(grad3[gi101], x-1, y, z-1);
double n011= dot3d(grad3[gi011], x, y-1, z-1);
double n111= dot3d(grad3[gi111], x-1, y-1, z-1);
/* Compute the fade curve value for each of x, y, z */
double u = fade(x);
double v = fade(y);
double w = fade(z);
/* Interpolate along x the contributions from each of the corners */
double nx00 = mix(n000, n100, u);
double nx01 = mix(n001, n101, u);
double nx10 = mix(n010, n110, u);
double nx11 = mix(n011, n111, u);
/* Interpolate the four results along y */
double nxy0 = mix(nx00, nx10, v);
double nxy1 = mix(nx01, nx11, v);
/* Interpolate the two last results along z */
double nxyz = mix(nxy0, nxy1, w);
return nxyz;
}
/* 2D simplex noise */
double simplex_noise_2d(double xin, double yin) {
double n0, n1, n2;
/* Noise contributions from the three corners */
/* Skew the input space to determine which simplex cell we're in */
double F2 = 0.5*(sqrt(3.0)-1.0);
double s = (xin+yin)*F2;
/* Hairy factor for 2D */
int i = fastfloor(xin+s);
int j = fastfloor(yin+s);
double G2 = (3.0-sqrt(3.0))/6.0;
double t = (i+j)*G2;
double X0 = i-t;
/* Unskew the cell origin back to (x,y) space */
double Y0 = j-t;
double x0 = xin-X0;
/* The x,y distances from the cell origin */
double y0 = yin-Y0;
/* For the 2D case, the simplex shape is an equilateral triangle.*/
/* Determine which simplex we are in. */
int i1, j1;
/* Offsets for second (middle) corner of simplex in (i,j) coords */
if(x0>y0) {i1=1; j1=0;}
/* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
else {i1=0; j1=1;}
/* upper triangle, YX order: (0,0)->(0,1)->(1,1) */
/* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and */
/* a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where */
/* c = (3-sqrt(3))/6 */
double x1 = x0 - i1 + G2;
/* Offsets for middle corner in (x,y) unskewed coords */
double y1 = y0 - j1 + G2;
double x2 = x0 - 1.0 + 2.0 * G2;
/* Offsets for last corner in (x,y) unskewed coords */
double y2 = y0 - 1.0 + 2.0 * G2;
/* Work out the hashed gradient indices of the three simplex corners */
int ii = i & 255;
int jj = j & 255;
int gi0 = perm[ii+perm[jj]] % 12;
int gi1 = perm[ii+i1+perm[jj+j1]] % 12;
int gi2 = perm[ii+1+perm[jj+1]] % 12;
/* Calculate the contribution from the three corners */
double t0 = 0.5 - x0*x0-y0*y0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot2d(grad3[gi0], x0, y0);
/* (x,y) of grad3 used for 2D gradient */
}
double t1 = 0.5 - x1*x1-y1*y1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot2d(grad3[gi1], x1, y1);
}
double t2 = 0.5 - x2*x2-y2*y2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot2d(grad3[gi2], x2, y2);
}
/* Add contributions from each corner to get the final noise value. */
/* The result is scaled to return values in the interval [-1,1]. */
return 70.0 * (n0 + n1 + n2);
}
/* 3D simplex noise */
double simplex_noise_3d(double xin, double yin, double zin)
{
double n0, n1, n2, n3;
/* Noise contributions from the four corners */
/* Skew the input space to determine which simplex cell we're in */
double F3 = 1.0/3.0;
double s = (xin+yin+zin)*F3;
/* Very nice and simple skew factor for 3D */
int i = fastfloor(xin+s);
int j = fastfloor(yin+s);
int k = fastfloor(zin+s);
double G3 = 1.0/6.0;
/* Very nice and simple unskew factor, too */
double t = (i+j+k)*G3;
double X0 = i-t;
/* Unskew the cell origin back to (x,y,z) space */
double Y0 = j-t;
double Z0 = k-t;
double x0 = xin-X0;
/* The x,y,z distances from the cell origin */
double y0 = yin-Y0;
double z0 = zin-Z0;
/* For the 3D case, the simplex shape is a slightly irregular tetrahedron. */
/* Determine which simplex we are in. */
int i1, j1, k1;
/* Offsets for second corner of simplex in (i,j,k) coords */
int i2, j2, k2;
/* Offsets for third corner of simplex in (i,j,k) coords */
if(x0>=y0) {
if(y0>=z0)
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; }
/* X Y Z order */
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; }
/* X Z Y order */
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; }
/* Z X Y order */
}
else {
/* x0<y0 */
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; }
/* Z Y X order */
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; }
/* Y Z X order */
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; }
/* Y X Z order */
}
/* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), */
/* a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and */
/* a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where */
/* c = 1/6. */
double x1 = x0 - i1 + G3;
/* Offsets for second corner in (x,y,z) coords */
double y1 = y0 - j1 + G3;
double z1 = z0 - k1 + G3;
double x2 = x0 - i2 + 2.0*G3;
/* Offsets for third corner in (x,y,z) coords */
double y2 = y0 - j2 + 2.0*G3;
double z2 = z0 - k2 + 2.0*G3;
double x3 = x0 - 1.0 + 3.0*G3;
/* Offsets for last corner in (x,y,z) coords */
double y3 = y0 - 1.0 + 3.0*G3;
double z3 = z0 - 1.0 + 3.0*G3;
/* Work out the hashed gradient indices of the four simplex corners */
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int gi0 = perm[ii+perm[jj+perm[kk]]] % 12;
int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1]]] % 12;
int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12;
int gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12;
/* Calculate the contribution from the four corners */
double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot3d(grad3[gi0], x0, y0, z0);
}
double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot3d(grad3[gi1], x1, y1, z1);
}
double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot3d(grad3[gi2], x2, y2, z2);
}
double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
if(t3<0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * dot3d(grad3[gi3], x3, y3, z3);
}
/* Add contributions from each corner to get the final noise value. */
/* The result is scaled to stay just inside [-1,1] */
return 32.0*(n0 + n1 + n2 + n3);
}
int main( int argc, char *argv[] ) {
int num_points = 500; /* how many points to calculate, in each direction! */
int i, j, k;
int noise_type = 1; /* default to 3d simplex. */
if ( argc != 2 ) {
printf( "usage: %s <noise_type>\n noise types: \n\t1 -> classic noise\n\t2 -> 2d simplex\n\t3 -> 3d simplex \n", argv[ 0 ] );
return 1;
}
else {
noise_type = *argv[ 1 ];
}
/* To remove the need for index wrapping, double the permutation table length */
for ( i = 0; i < 512; i++) {
perm[ i ] = p[ i & 255 ];
}
if ( noise_type == '1' ) { /* classic 3d perlin noise. */
for ( k = 0; k < num_points; k++ ) {
for ( j = 0; j < num_points; j++ ) {
for ( i = 0; i < num_points; i++ ) {
double noise = classic_noise( i / 8.0, j / 8.0, k / 8.0 );
noise = noise * 1.0; /* dummy noop to avoid compile warning. */
}
}
}
}
else if ( noise_type == '2' ) { /* 2d simplex noise. */
for ( j = 0; j < num_points * num_points; j++ ) { /* make up for being in a 2d plane by doing more */
for ( i = 0; i < num_points; i++ ) {
double noise = simplex_noise_2d( i / 8.0, j / 8.0 );
noise = noise * 1.0; /* dummy noop to avoid compile warning. */
}
}
}
else if ( noise_type == '3' ) { /* 3d simplex noise. */
for ( k = 0; k < num_points; k++ ) {
for ( j = 0; j < num_points; j++ ) {
for ( i = 0; i < num_points; i++ ) {
double noise = simplex_noise_3d( i / 8.0, j / 8.0, k / 8.0 );
noise = noise * 1.0; /* dummy noop to avoid compile warning. */
}
}
}
}
else {
printf( "unknown noise type.\n" );
return 2;
}
return 0;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment