Skip to content

Instantly share code, notes, and snippets.

João Felipe Santos jfsantos

Block or report user

Report or block jfsantos

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
View audio_utils.py
import glob
import logging
import os
import numpy as np
import re
import soundfile
from numpy.lib.stride_tricks import as_strided
from maracas.maracas import asl_meter
from audio_tools import iterate_invert_spectrogram
View train_loop.py
import torch
from torch.autograd import Variable
import numpy as np
import pickle
import os
from glob import glob
from tqdm import tqdm
@jfsantos
jfsantos / error.log
Created Apr 11, 2017
Issue when compiling PyTorch on a crouton env (ASUS Chromebook Flip)
View error.log
-- Build files have been written to: /home/jfsantos/pytorch/torch/lib/build/libshm
[ 50%] Built target torch_shm_manager
[ 75%] Building CXX object CMakeFiles/shm.dir/core.cpp.o
/home/jfsantos/pytorch/torch/lib/libshm/core.cpp:149:1: error: invalid conversion from 'void* (*)(void*, long int)' to 'void* (*)(void*, ptrdiff_t) {aka void* (*)(void*, int)}' [-fpermissive]
};
^
/home/jfsantos/pytorch/torch/lib/libshm/core.cpp:149:1: error: invalid conversion from 'void* (*)(void*, void*, long int)' to 'void* (*)(void*, void*, ptrdiff_t) {aka void* (*)(void*, void*, int)}' [-fpermissive]
CMakeFiles/shm.dir/build.make:62: recipe for target 'CMakeFiles/shm.dir/core.cpp.o' failed
make[2]: *** [CMakeFiles/shm.dir/core.cpp.o] Error 1
CMakeFiles/Makefile2:67: recipe for target 'CMakeFiles/shm.dir/all' failed
View pairwise_distance.py
from __future__ import division
import multiprocessing
import scipy.spatial.distance
import numpy as np
import sklearn.datasets
from time import time
from multiprocessing import Pool
from itertools import combinations
View pytorch_train_with_masking.py
def train_fn(model, optimizer, criterion, batch):
x, y, lengths = batch
x = Variable(x.cuda())
y = Variable(y.cuda(), requires_grad=False)
mask = Variable(torch.ByteTensor(x.size()).fill_(1).cuda(),
requires_grad=False)
for k, l in enumerate(lengths):
mask[:l, k, :] = 0
View dummy_dataset.py
from torch.utils.data import Dataset
class DummyDataset(Dataset):
def __init__(self, items):
super(DummyDataset, self).__init__()
self.items = items
def __getitem__(self, index):
return self.items[index]
View gist:c0f3f4cd5c76dfc5f1ba8310a821c2d5
Agility
&{template:default} {{name=@{selected|character_name}}}{{Agility roll=[[1d20 + @{selected|agility_mod} + [[?{# Boons|0} - ?{# Banes|0}]]d6k1]]}}
Intellect
&{template:default} {{name=@{selected|character_name}}}{{Intellect roll=[[1d20 + @{selected|intellect_mod} + [[?{# Boons|0} - ?{# Banes|0}]]d6k1]]}}
Perception
View logistic_regression_with_checkpointing.py
'''
A logistic regression example using the meta-graph checkpointing
features of Tensorflow.
Author: João Felipe Santos, based on code by Aymeric Damien
(https://github.com/aymericdamien/TensorFlow-Examples/)
'''
from __future__ import print_function
@jfsantos
jfsantos / 0_reuse_code.js
Created Nov 29, 2016
Here are some things you can do with Gists in GistBox.
View 0_reuse_code.js
// Use Gists to store code you would like to remember later on
console.log(window); // log the "window" object to the console
View example_hdf5matrix.py
from keras.models import Sequential
from keras.layers import Dense
from keras.utils.io_utils import HDF5Matrix
import numpy as np
def create_dataset():
import h5py
X = np.random.randn(200,10).astype('float32')
y = np.random.randint(0, 2, size=(200,1))
f = h5py.File('test.h5', 'w')
You can’t perform that action at this time.