Skip to content

Instantly share code, notes, and snippets.

@jiahao
Created January 4, 2012 17:44
Show Gist options
  • Save jiahao/1561144 to your computer and use it in GitHub Desktop.
Save jiahao/1561144 to your computer and use it in GitHub Desktop.
Pure Python implementation of some numerical optimizers
#!/usr/bin/env python
'''
Pure Python implementation of some numerical optimizers
Created on Jan 21, 2011
@author Jiahao Chen
'''
from scipy import dot, eye, finfo, asarray_chkfinite, sqrt, \
outer, zeros, isinf, arccos
from scipy.linalg import inv, norm, pinv, solve, LinAlgError
from copy import deepcopy
_epsilon = sqrt(finfo(float).eps)
#################
# Line searches #
#################
def MinpackLineSearch(f, df, x, p, df_x = None, f_x = None,
args = (), c1 = 1e-4, c2 = 0.4, amax = 50, xtol = _epsilon):
"Modified shamelessly from scipy.optimize"
if df_x == None: df_x = df(x)
if f_x == None: f_x = f(x)
from scipy.optimize import line_search
stp, _, _, _, _, _ = line_search(f, df, x, p, df_x, f_x, f_x, args, c1, c2, amax)
if stp == None: #Fall back to backtracking linesearch
return BacktrackingLineSearch(f, df, x, p, df_x, f_x, args)
else:
return stp
def MoreThuenteLinesearchIterate(delta, alpha_l, alpha_u, alpha_t, alpha_min,
alpha_max, f_l, g_l, f_t, g_t, f_u, g_u, isBracketed, Verbose):
#Section 4 of More and Thuente: Pick new trial alpha
if Verbose: print 'Section 4 of More and Thuente'
assert not (isBracketed and not min(alpha_l, alpha_u) < alpha_t < max(alpha_l, alpha_u)), 'Bracketing fail'
#if g_t * (alpha_t - alpha_l) < 0.0:
# if Verbose: print 'Going uphill; reverting to last good point'
# return isBracketed, alpha_l, alpha_l, alpha_t
if alpha_min == alpha_max:
print 'Squeezed!'
return isBracketed, alpha_min, alpha_min, alpha_min
assert alpha_min < alpha_max
sgnd = dot(g_t, g_l / abs(g_l))
isBounded = False
if f_t > f_l:
if Verbose:
print """Case 1: a higher function value. \
The minimum is bracketed by [a_l, a_t]. If the cubic step is closer to \
lower bound then take it, else take average of quadratic and cubic steps."""
#Calculate cubic and quadratic steps
da = alpha_t - alpha_l
d1 = g_l + g_t + 3 * (f_l - f_t) / da
s = max(g_l, g_t, d1)
d2 = s * ((d1 / s) ** 2 - (g_l / s * g_t / s)) ** 0.5
if alpha_t < alpha_l:
d2 = -d2
cubp = d2 - g_l + d1
cubq = ((d2 - g_l) + d2) + g_t
if abs(cubq) > _epsilon:
r = cubp / cubq
#Minimizer of cubic that interpolates f_l, f_t, g_l, g_t
alpha_c = alpha_l + r * da
#Minimizer of quadratic that interpolates f_l, f_t, g_l
alpha_q = alpha_l + ((g_l / ((f_l - f_t) / da + g_l)) * 0.5 * da)
else:
#print 'WARNING: VERY SMALL INTERVAL'
alpha_c = alpha_q = 0.5 * (alpha_l + alpha_t) #Invalid, choose midpoint
#Calculate new trial
if Verbose:
print 'Interpolating guesses:', alpha_c, alpha_q
if abs(alpha_c - alpha_l) < abs(alpha_q - alpha_l):
alpha_tt = alpha_c
else:
alpha_tt = 0.5 * (alpha_c + alpha_q)
isBracketed = True
isBounded = True
elif sgnd < 0: #f_t <= f_l assumed by here
if Verbose:
print """Case 2: lower function value and derivatives are of opposite sign. \
The minimum is bracketed by [a_l, a_t]. If the cubic step is closer to lower \
bound then take it, else take quadratic step."""
#Calculate cubic and quadratic steps
da = alpha_t - alpha_l
d1 = g_l + g_t + 3 * (f_l - f_t) / da
s = max(g_l, g_t, d1)
d2 = s * ((d1 / s) ** 2 - (g_l / s * g_t / s)) ** 0.5
if alpha_t < alpha_l:
d2 = -d2
cubp = d2 - g_t + d1
cubq = ((d2 - g_t) + d2) + g_l
if abs(cubq) > _epsilon:
r = cubp / cubq #Minimizer of cubic that interpolates f_l, f_t, g_l, g_t
alpha_c = alpha_t - r * da #Minimizer of quadratic that interpolates f_l, f_t, g_l
alpha_s = alpha_t - (g_l / (g_l - g_t)) * da
else:
#print 'WARNING: VERY SMALL INTERVAL'
alpha_s = alpha_c = 0.5 * (alpha_l + alpha_t) #Invalid, choose midpoint
#Calculate new trial
if Verbose:
print 'Interpolating guesses:', alpha_c, alpha_s
if abs(alpha_c - alpha_t) >= abs(alpha_s - alpha_t):
alpha_tt = alpha_c
else:
alpha_tt = alpha_s
isBracketed = True
isBounded = False
elif norm(g_t) <= norm(g_l): #g_t * g_l >= 0 and f_t <= f_l assumed by here
if Verbose:
print """Case 3: lower function value and derivatives are of same \
sign, and magnitude of derivative decreased.\n Cubic step used only if it tends \
to infinity in direction of step or if minimum of cubic lies beyond step. \
Otherwise cubic step is defined to be either stpmin or stpmax. Quadratic step is \
taken if it is closer to alpha_t, else take the farthest step."""
#Calculate cubic and quadratic steps
da = alpha_t - alpha_l
d1 = g_l + g_t + 3 * (f_l - f_t) / da
s = max(g_l, g_t, d1)
d2 = s * ((d1 / s) ** 2 - (g_l / s * g_t / s)) ** 0.5
if alpha_t < alpha_l:
d2 = -d2
cubp = d2 - g_t + d1
cubq = ((d2 - g_t) + d2) + g_l
r = cubp / cubq
#The case d2 == 0 arises only if cubic does not tend to infinity in
#direction of step
if (r < 0. and abs(d2) < _epsilon):
alpha_c = alpha_t - r * da
elif alpha_t > alpha_l:
alpha_c = alpha_max
else:
alpha_c = alpha_min
#Minimizer of quadratic that interpolates f_l, f_t, g_l
alpha_s = -alpha_t - (g_l / (g_l - g_t)) * da
if isBracketed:
if abs(alpha_c - alpha_t) < abs(alpha_s - alpha_t):
alpha_tt = alpha_c
else:
alpha_tt = alpha_s
else:
if abs(alpha_c - alpha_t) > abs(alpha_s - alpha_t):
alpha_tt = alpha_c
else:
alpha_tt = alpha_s
else:
if Verbose:
print """Case 4: lower function value and derivatives \
are of same sign, and magnitude of derivative did not decrease.
The minimum is NOT NECESSARILY bracketed. \
If bracketed, take cubic step, otherwise take alpha_min or alpha_max."""
#Minimizer of cubic that interpolates f_u, f_t, g_u, g_t
#Formula from Nocedal and Wright 2/e, Eq. 3.59, p 59
if isBracketed:
da = alpha_t - alpha_u
d1 = g_u + g_t + 3 * (f_u - f_t) / da
s = max(g_l, g_t, d1)
d2 = s * ((d1 / s) ** 2 - (g_l / s * g_t / s)) ** 0.5
if alpha_t < alpha_u:
d2 = -d2
cubp = d2 - g_t + d1
cubq = ((d2 - g_t) + d2) + g_u
if abs(cubq) > _epsilon:
r = cubp / cubq
alpha_tt = alpha_t - r * da
else:
#print 'WARNING: VERY SMALL INTERVAL'
alpha_tt = 0.5 * (alpha_l + alpha_t) #Invalid, choose midpoint
else:
if alpha_t > alpha_l:
alpha_tt = alpha_max
else:
alpha_tt = alpha_min
isBounded = False #abs(g_t) > abs(g_l)
if Verbose: print 'Now proceeding to update'
#Update interval of uncertainty
if f_t > f_l:
if Verbose: print 'Update case 1'
alpha_u, f_u, g_u = alpha_t, f_t, g_t
else:
if sgnd < 0:
if Verbose: print 'Update case 2'
alpha_u, f_u, g_u = alpha_l, f_l, g_l
else:
if Verbose: print 'Update case 3'
alpha_l, f_l, g_l = alpha_t, f_t, g_t
"""Refine trial value if it lies outside [alpha_t, alpha_u] or
is otherwise too close to alpha_u."""
alpha_tt = min(alpha_max, alpha_tt)
alpha_tt = max(alpha_min, alpha_tt) #Update
alpha_t = alpha_tt
if isBracketed and isBounded:
if alpha_u > alpha_l:
alpha_t = min(alpha_l + delta * (alpha_u - alpha_l), alpha_t)
else:
alpha_t = max(alpha_l + delta * (alpha_u - alpha_l), alpha_t)
if Verbose: print 'Refined trial value = ', alpha_t
return isBracketed, alpha_t, alpha_l, alpha_u
def MoreThuenteLineSearch(f, df, x, p, df_x = None, f_x = None, args = (),
mu = 0.01, eta = 0.5, ftol = _epsilon, gtol = _epsilon, rtol = _epsilon,
maxiter = 9, fmin = 0.0, alpha_min0 = 0.001, alpha_max0 = 100.0, alpha_t = 1.0,
p5 = 0.5, xtrapf = 4.0, delta = 0.66, Verbose = False):
"""Implements the line search algorithm of Mor\'e and Thuente, ACM TOMS 1994
"Line search algorithms with guaranteed sufficient decrease"
doi: 10.1145/192115.192132
Inputs
------
f
df
x
p
df_x = None
f_x = None
args = ()
mu = 0.01
mu is maximum required decrease
mu >= |f(x+dx) - f(x)| / |df(x).p|
mu in (0,1)
eta = 0.5
eta is maximum permissible value of |df(x+dx).p|/|df(x).p|
eta in (0,1)
ftol = _epsilon
gtol = _epsilon
rtol = _epsilon
rtol is relative tolerance for acceptable step
maxiter: Maximum number of iterations. Default: 9
fmin = 0.0
alpha_min0 = 0.001
alpha_max0 = 100.0
alpha_t = 1.0
p5 = 0.5
xtrapf: An extrapolation parameter. Recommended: between [1.1, 4.0].
Default: 4.0
delta = 0.66
Verbose = True
"""
##################################
# Evaluate function and derivative
##################################
if f_x == None: f_0 = f(x, *args)
else: f_0 = f_x
if df_x == None: df_0 = df(x, *args)
else: df_0 = df_x
g_0 = dot(df_0, p)
############################################################
# Check that initial gradient in search direction is downhill
#############################################################
assert g_0.shape == (1, 1) or g_0.shape == (), 'Scipy screwed up the calculation.'
assert g_0 < 0, 'Attempted to linesearch uphill'
############
# Initialize
############
FoundGoodPoint = isBracketed = False
gtest = ftol * g_0
width = alpha_max0 - alpha_min0
width1 = width / p5
f_t = f(x + alpha_t * p, *args)
df_t = df(x + alpha_t * p, *args)
g_t = dot(df_t, p)
# alpha = step size
# f = function value
# g = gradient value in descent direction
# _l = best step so far
# _u = other endpoint of interval of uncertainty
# _t = current step iterate
alpha_l = alpha_u = 0.0
f_l = f_u = f_0
g_l = g_u = g_0
if alpha_l == alpha_min0: alpha_l += _epsilon
if alpha_u == alpha_max0: alpha_u -= _epsilon
assert alpha_min0 != alpha_max0
for k in range(maxiter):
if Verbose: print 'Iteration', k, ':', alpha_t, 'in (', alpha_l, ',', alpha_u, ')'
############################################
# Initialize current interval of uncertainty
############################################
if isBracketed:
alpha_min = min(alpha_l, alpha_u)
alpha_max = max(alpha_l, alpha_u)
else:
alpha_min = alpha_l
alpha_max = alpha_t + xtrapf * abs(alpha_t - alpha_l)
assert alpha_min <= alpha_max
##################################################
# Safeguard trial step within pre-specified bounds
##################################################
alpha_t = max(alpha_t, alpha_min0)
alpha_t = min(alpha_t, alpha_max0)
#If something funny happened, set it to lowest point obtained thus far
if ((isBracketed and (alpha_t <= alpha_min or alpha_t >= alpha_max)) \
or (isBracketed and (alpha_max - alpha_min <= rtol * alpha_max)) \
):
if Verbose: print 'Something funny happened'
return alpha_l
#Evaluate function and gradient at new point
f_t = f(x + alpha_t * p, *args)
df_t = df(x + alpha_t * p, *args)
g_t = dot(df_t, p)
ftest1 = f_0 + alpha_t * gtest
######################
# Test for convergence
######################
if (alpha_l == alpha_max0 and f_t <= ftest1 and g_t <= gtest):
if Verbose: print 'Stuck on upper bound'
break
if (alpha_l == alpha_min0 and f_t > ftest1 and g_t >= gtest):
if Verbose: print 'Stuck on lower bound'
break
#Check for a) sufficient decrease AND b) strong curvature criterion
if ((f_t <= f_0 + mu * g_0 * alpha_t) \
and abs(g_t) <= eta * abs(g_0)):
if Verbose: print 'Decrease criterion satisfied'
break
#Check for bad stuff
if isBracketed:
if (abs(alpha_max - alpha_min) >= delta * width1):
print 'Warning: Could not satisfy curvature conditions'
alpha_t = alpha_min + p5 * (alpha_max - alpha_min)
width1 = width
width = abs(alpha_max - alpha_min)
#If interval is bracketed to sufficient precision, break
if k > 0 and abs(alpha_l - alpha_u) < rtol:
if Verbose: print 'Interval bracketed: alpha = ', alpha_t
print 'Line search stuck. Emergency abort.'
break
########################################################
# Nocedal's modification of the More-Thuente line search
########################################################
ftest1 = f_0 + alpha_l * gtest
# Seek a step for which the modified function has a nonpositive value
# and a nonnegative derivative
if (not FoundGoodPoint) and f_t <= ftest1 and g_t >= g_0 * min(ftol, gtol):
FoundGoodPoint = True
# The modified function is used only if we don't have a step where the
# previous condition is attained, and if a lower function value has been
# obtained but it is not low enough
if (not FoundGoodPoint) and f_t <= f_l and f_t > ftest1:
if Verbose: print "Performing Nocedal's modification"
f_mt = f_t - alpha_t * gtest
f_ml = f_l - alpha_l * gtest
f_mu = f_u - alpha_u * gtest
g_mt = g_t - gtest
g_ml = g_l - gtest
g_mu = g_u - gtest
isBracketed, alpha_t, alpha_l, alpha_u = MoreThuenteLinesearchIterate\
(delta, alpha_l, alpha_u, alpha_t, alpha_min, alpha_max, f_ml, \
g_ml, f_mt, g_mt, f_mu, g_mu, isBracketed, Verbose)
f_l = f_ml + alpha_l * gtest
f_u = f_mu + alpha_u * gtest
g_l = g_ml + gtest
g_u = g_mu + gtest
else:
if Verbose: print 'Performing original More-Thuente line search'
isBracketed, alpha_t, alpha_l, alpha_u = MoreThuenteLinesearchIterate\
(delta, alpha_l, alpha_u, alpha_t, alpha_min, alpha_max, f_l, g_l, \
f_t, g_t, f_u, g_u, isBracketed, Verbose)
###########################
# Force sufficient decrease
###########################
if isBracketed:
if Verbose: print 'Force sufficient decrease'
if abs(alpha_u - alpha_l) >= delta * width1:
alpha_t = alpha_l + p5 * (alpha_u - alpha_l)
width1 = width
width = abs(alpha_u - alpha_l)
if Verbose: print k + 1, 'iterations in More-Thuente line search'
return alpha_t
def CubicLineSearch(f, df, x, p, df_x, f_x = None, args = (),
alpha = 0.0001, beta = 0.9, eps = 0.0001, Verbose = False):
if f_x is None:
f_x = f(x, *args)
assert df_x.T.shape == p.shape
assert 0 < alpha < 1, 'Invalid value of alpha in backtracking linesearch'
assert 0 < beta < 1, 'Invalid value of beta in backtracking linesearch'
phi = lambda c: f(x + (c * p), *args)
phi0 = f_x
derphi0 = dot(df_x, p)
assert derphi0.shape == (1, 1) or derphi0.shape == ()
assert derphi0 < 0, 'Attempted to linesearch uphill'
stp = 1.0
#Loop until Armijo condition is satisfied
while phi(stp) > phi0 + alpha * stp * derphi0:
#Quadratic interpolant
stp_q = -derphi0 * alpha ** 2 / (2 * phi(stp) - phi0 - derphi0 * stp)
if phi(stp_q) > f_x + alpha * stp_q * derphi0:
return stp_q
#Quadratic interpolant bad, use cubic interpolant
A = zeros((2, 2))
b = zeros((2,))
A[0, 0] = stp * stp
A[0, 1] = -stp_q ** 2
A[1, 0] = -stp ** 3
A[1, 1] = stp_q ** 3
b[0] = phi(stp_q) - phi0 - derphi0 * stp_q
b[1] = phi(stp) - phi0 - derphi0 * stp
xx = dot(A, b) / ((stp * stp_q) ** 2 * (stp_q - stp))
stp_c = (-xx[1] + (xx[1] ** 2 - 3 * xx[0] * derphi0) ** 0.5) / (3 * xx[0])
#Safeguard: if new alpha too close to predecessor or too small
if abs(stp_c - stp) < 0.001 or stp_c < 0.001:
stp *= beta
else:
stp = stp_c
#print stp
#print stp
return stp
def BacktrackingLineSearch(f, df, x, p, df_x = None, f_x = None, args = (),
alpha = 0.0001, beta = 0.9, eps = _epsilon, Verbose = False):
"""
Backtracking linesearch
f: function
x: current point
p: direction of search
df_x: gradient at x
f_x = f(x) (Optional)
args: optional arguments to f (optional)
alpha, beta: backtracking parameters
eps: (Optional) quit if norm of step produced is less than this
Verbose: (Optional) Print lots of info about progress
Reference: Nocedal and Wright 2/e (2006), p. 37
Usage notes:
-----------
Recommended for Newton methods; less appropriate for quasi-Newton or conjugate gradients
"""
if f_x is None:
f_x = f(x, *args)
if df_x is None:
df_x = df(x, *args)
assert df_x.T.shape == p.shape
assert 0 < alpha < 1, 'Invalid value of alpha in backtracking linesearch'
assert 0 < beta < 1, 'Invalid value of beta in backtracking linesearch'
derphi = dot(df_x, p)
assert derphi.shape == (1, 1) or derphi.shape == ()
assert derphi < 0, 'Attempted to linesearch uphill'
stp = 1.0
fc = 0
len_p = norm(p)
#Loop until Armijo condition is satisfied
while f(x + stp * p, *args) > f_x + alpha * stp * derphi:
stp *= beta
fc += 1
if Verbose: print 'linesearch iteration', fc, ':', stp, f(x + stp * p, *args), f_x + alpha * stp * derphi
if stp * len_p < eps:
print 'Step is too small, stop'
break
#if Verbose: print 'linesearch iteration 0 :', stp, f_x, f_x
if Verbose: print 'linesearch done'
#print fc, 'iterations in linesearch'
return stp
#######################
# Trust region models #
#######################
class DogLeg:
def __init__(self, f, df, B, x, g, f_x = None, df_x = None, TrustRadius = 1.0):
self.TrustRadius = TrustRadius
self.f = f #Function
self.df = df #Gradient function
self.B = B #Approximate Hessian
self.x = x #Current point
self.g = g #Search direction
def solve(self):
g = self.g
B = self.B
#Step 1: Find unconstrained solution
pB = g
#Step 2: Find Cauchy point
pU = -dot(g, g) / dot(g, dot(B, g)) * g
#INCOMPLETE
################
# Extrapolator #
################
class DIISExtrapolator:
def __init__(self, max = 300):
self.maxvectors = max
self.Reset()
def Reset(self):
self.errorvectors = []
self.coordvectors = []
def AddData(self, error, coord):
#Check max
while self.GetNumVectors() - self.maxvectors >= 0:
self.errorvectors.pop()
self.coordvectors.pop()
from numpy import asarray
#print asarray(error).flatten().shape, asarray(coord).flatten().shape
self.errorvectors.append(deepcopy(asarray(error).flatten()))
self.coordvectors.append(deepcopy(asarray(coord).flatten()))
def GetNumVectors(self):
assert len(self.errorvectors) == len(self.coordvectors)
return len(self.errorvectors)
def Extrapolate(self):
#Construct Overlap matrix (aka Gram matrix)
N = self.GetNumVectors()
if N == 0: return None
B = zeros((N + 1, N + 1))
for i in range(N):
for j in range(N):
B[i, j] = dot(self.errorvectors[i], self.errorvectors[j])
B[N, :] = -1
B[:, N] = -1
B[N, N] = 0
v = zeros(N + 1)
v[N] = -1
#Solve for linear combination
xex = self.coordvectors[0] * 0
try:
c = solve(B, v)
assert c.shape == v.shape
#Generate interpolated coordinate
for i in range(N):
xex += c[i] * self.coordvectors[i]
except: #Linear dependency detected; trigger automatic reset
c = dot(pinv(B), v)
#Generate interpolated coordinate
for i in range(N):
xex += c[i] * self.coordvectors[i]
print 'Linear dependency detected in DIIS; resetting'
self.Reset()
return xex
#######################
# Quasi-Newton driver #
#######################
class ApproxHessianBase:
def __init__(self, N = None):
if N is None:
self.M = None
else:
self.M = eye(N)
def Reset(self):
self.SetToIdentity()
def SetToIdentity(self):
self.M = eye(self.M.shape[0])
def SetToScaledIdentity(self, c = 1):
self.M = c * eye(self.M.shape[0])
def SetToMatrix(self, K):
self.M = K
def GetHessian(self):
return self.M
def Operate(self, g):
assert False, 'Should never run this'
def Update(self, *args):
assert False, 'Should never run this'
def __rshift__(self, g): #Overload >> operator
"""If self.B is defined, solves for x in B x = -g
"""
try:
dx = self.Operate(g)
except ValueError, e:
print e
print g.shape, self.M.shape
exit()
try:
return asarray_chkfinite(dx)
except (LinAlgError, ValueError):
print 'Restarting approximate Hessian'
'Trigger restart, fall back to steepest descent'
self.SetToIdentity()
return g
class ApproxHessian(ApproxHessianBase):
def __init__(self, N = None):
ApproxHessianBase.__init__(self, N)
def SetToNumericalHessian(self, df, x, step = 0.001, UseStencil = None):
if UseStencil is None:
import Stencil
UseStencil = Stencil.FirstOrderCentralDifferenceStencil()
#Initialize Hessian as numerical Hessian
self.M = UseStencil.ApplyToFunction(df, x, step)
def Operate(self, g):
"""If self.B is defined, solves for x in B x = -g
"""
try:
dx = -solve(self.M, g)
except LinAlgError:
print 'Warning, using pseudoinverse'
dx = -pinv(self.M, g)
return dx
class ApproxInvHessian(ApproxHessianBase):
def __init__(self, N = None):
ApproxHessianBase.__init__(self, N)
def SetToNumericalHessian(self, df, x, step = 0.001, UseStencil = None):
if UseStencil is None:
import Stencil
UseStencil = Stencil.FirstOrderCentralDifferenceStencil()
#Initialize Hessian as numerical Hessian
K = UseStencil.ApplyToFunction(df, x, step)
try:
self.M = inv(K)
except LinAlgError:
self.M = pinv(K)
def GetHessian(self):
try:
return inv(self.M)
except LinAlgError:
print 'Warning, using pseudoinverse'
return pinv(self.M)
def Operate(self, g):
"""If self.H is defined, returns x = H g
"""
return - dot(self.M, g)
class BFGSInvHessian(ApproxInvHessian):
def Update(self, s, y, s_dot_y = None):
if s_dot_y is None: s_dot_y = dot(s, y)
rhok = 1.0 / s_dot_y
I = eye(self.M.shape[0])
A1 = I - outer(s, y) * rhok
A2 = I - outer(y, s) * rhok
self.M = dot(A1, dot(self.M, A2))
self.M += +rhok * outer(s, s)
class LBFGSInvHessian(ApproxInvHessian):
def __init__(self, M = 20):
self.maxnumvecs = int(M)
self.rho = []
self.gamma = 1.0
self.Reset()
print 'Initialized L-BFGS Hessian approximation with M =', self.maxnumvecs
def Reset(self):
self.s = []
self.y = []
self.rho = []
def SetToIdentity(self): #Reset
self.Reset()
def SetToScaledIdentity(self, c = None): #Reset
self.Reset()
if c is not None: self.gamma = c
def Update(self, s, y, s_dot_y = None):
if len(self.s) == self.maxnumvecs:
self.s.pop(0)
self.y.pop(0)
self.rho.pop(0)
if s_dot_y is None: s_dot_y = dot(s, y)
rho = 1.0 / s_dot_y
if isinf(rho):
print 'Warning, s . y = 0; ignoring pair'
else:
self.s.append(s)
self.y.append(y)
self.rho.append(rho)
def GetNumVecs(self):
assert len(self.s) == len(self.y)
return len(self.s)
def __rshift__(self, g): #Overload >> as multiply -H g
q = g
m = self.GetNumVecs()
s = self.s
y = self.y
a = zeros(m)
for i in range(m - 1, -1, -1):
a[i] = self.rho[i] * dot(s[i], q)
q = q - a[i] * y[i]
#r = Hguess * q
gamma = self.gamma
if m > 0: gamma = dot(s[-1], y[-1]) / dot(y[-1], y[-1])
#if m > 0: gamma = 0.5 * gamma + 0.5 * dot(s[-1], y[-1]) / dot(y[-1], y[-1])
self.gamma = gamma
print 'gamma=',gamma
r = gamma * q
for i in range(m):
b = self.rho[i] * dot(y[i], r)
r = r + s[i] * (a[i] - b)
return - r
def Optimizer(f, x0, df = None, xtol = 0.1*_epsilon**0.5,
gtol = 0.1*_epsilon**0.5, maxstep = 1, maxiter = None,
line_search = BacktrackingLineSearch, DIISTrigger = 0):
#Hijack code with call to L-BFGS-B
#from scipy.optimize import fmin_l_bfgs_b
#return fmin_l_bfgs_b(f, x0, df, m = len(x0), pgtol = gtol, factr = 1.0/xtol, iprint=1)[0]
#Do LBFGS
#If true, will fall back on BFGS automatically
DoLBFGS = True
DoLineSearch = True
TrustRadius = 0.5
MaxTrustRadius = 10.0
#Cosine squared of uphill angle
UphillAngleThresh = 0.0
UphillFThresh = 0.001
#Massage x0
x0 = asarray_chkfinite(x0).ravel()
if x0.ndim == 0: x0.shape = (1,)
#Set default number of maxiters
if maxiter is None: maxiter = max(20000, len(x0) * 4)
###########
#Initialize
###########
x = x0
f_x, df_x = f(x0), df(x0)
norm_g = norm(df_x)
N = len(x0)
if DoLBFGS:
#Dimension of 3 --- 20 is normal
#H = LBFGSInvHessian(2 + N ** 0.2)
H = LBFGSInvHessian(N)
else:
H = BFGSInvHessian(N)
H.SetToNumericalHessian(df, x)
if DIISTrigger != 0: DIIS = DIISExtrapolator()
for k in range(maxiter):
#######################################################################
# Solve for unconstrained minimization direction p such that H p = -x #
#######################################################################
p = H >> df_x #overloaded
AcceptStep = True
##########################################################
# Safeguard: perform linesearch or trust-region limiting #
# to determine actual step s to take #
##########################################################
if DoLineSearch:
####################
# Perform linesearch
####################
alpha = line_search(f, df, x, p, df_x, f_x)
try:
alpha = line_search(f, df, x, p, df_x, f_x)
assert alpha > 0
except AssertionError:
print 'Line search failed; falling back to exact line search'
alpha = MinpackLineSearch(f, df, x, p, df_x, f_x)
assert alpha > 0
s = alpha * p
norm_s = norm(s)
else:
##############
# Do dog-leg #
##############
#First do line search along steepest descent direction
alpha = line_search(f, df, x, -df_x, df_x, f_x)
#Cauchy point is x - alpha * df_x
#Next, move toward unconstrained solution from Cauchy point
dogleg = p + alpha * df_x
alpha2 = line_search(f, df, x - alpha * df_x, dogleg)
s = -alpha * df_x + alpha2 * dogleg
#Stupidly enforce simple trust radius
norm_s = norm(s)
while norm_s > TrustRadius:
alpha2 *= 0.9
s = -alpha * df_x + alpha2 * dogleg
norm_s = norm(s)
######################################
# Do DIIS Extrapolation if requested #
######################################
DidDIIS = False
if DIISTrigger != 0:
data = zeros(len(df_x) + 1)
data[1:] = df_x
data[0] = f_x
DIIS.AddData(error = data, coord = x)
if DIIS.GetNumVectors() % DIISTrigger == 0:
mindf = min([norm(xx[1:]) for xx in DIIS.errorvectors])
xdnew = DIIS.Extrapolate()
norm_df_xdnew = norm(df(xdnew))
f_xdnew = f(xdnew)
if norm_df_xdnew < mindf and f_xdnew < f_x:
#Accept only if there is actually a reduction in |df|
print 'Accepted DIIS extrapolation'
DidDIIS = True
s = xdnew - x
#if DIISTrigger > 1: DIISTrigger -= 1
#print 'Improvement ratios', (f_x - f_xdnew) / f_x, (mindf - norm_df_xdnew) / mindf
if (f_x - f_xdnew) < 0.000001 * f_x and (mindf - norm_df_xdnew) < 0.00001 * mindf :
print 'DIIS reaching diminishing returns, resetting'
DIIS.Reset()
#DIISTrigger += 1
else:
print 'DIIS wanted to go to', f_xdnew, norm_df_xdnew
print "Rejected DIIS extrapolation"
DIIS.Reset()
DIISTrigger += 1
AcceptStep = False
if DIISTrigger > 50:
print 'Turning off DIIS'
DIISTrigger = 0
####################################################
# Take step; compute function value and derivative #
####################################################
xnew = x + s
f_xnew = f(xnew)
df_xnew = df(xnew)
y = df_xnew - df_x
norm_y = norm(y)
norm_gnew = norm(df_xnew)
s_y = dot(s, y)
#############################################
# If doing line search, update trust radius #
#############################################
if True:
ReductionRatio = 2 * (f_xnew - f_x) / dot(s, df_x)
print '\nReduction ratio:', ReductionRatio
if ReductionRatio <= 0:
print 'Iterations are producing a WORSE answer!\nBailing.'
print 'Rejecting step and restarting BFGS'
AcceptStep = False
if DoLBFGS:
H.Reset()
H.Update(s, y)
else:
gamma = s_y / norm_y ** 2
H.SetToScaledIdentity(gamma)
if not DoLineSearch: #ie do trust region
#Compute model quality?
ReductionRatio = 2 * (f_xnew - f_x) / dot(s, df_x)
print '\nReduction ratio:', ReductionRatio
if ReductionRatio > 0.75:
if norm(s) == TrustRadius:
TrustRadius = min (2 * TrustRadius, MaxTrustRadius)
elif ReductionRatio < 0.25:
TrustRadius *= 0.25
###################
# Check convergence
###################
if norm_g < gtol:
break
#################################
# Make sure we are going downhill
#################################
NegCosDescentAngle = s_y / (norm_s * norm_y)
DescentAngle = arccos(-NegCosDescentAngle)
DescentRatio = (f_x - f_xnew) / f_x
isGoingUphill = NegCosDescentAngle < UphillAngleThresh
isIncreasing = -DescentRatio > UphillFThresh
if isGoingUphill or isIncreasing:
if isGoingUphill:
print '\nIteration %d: WARNING: Going uphill with angle %f' % \
(k, -DescentAngle)
if isIncreasing:
print '\nIteration %d: WARNING: function increased by ratio %f' % \
(k, -DescentRatio)
print 'Rejecting step and restarting BFGS'
AcceptStep = False
if DoLBFGS:
H.Reset()
H.Update(s, y)
else:
gamma = s_y / norm_y ** 2
H.SetToScaledIdentity(gamma)
else:
#####################################
# Accept step, update quasi-Hessian #
#####################################
if not DidDIIS:
H.Update(s, y)
#####################################################
# EXPERIMENTAL: Heuristics for switching algorithms #
#####################################################
if False and DoLineSearch and DescentRatio < 1e-2:
print '\nTurning off linesearch'
DoLineSearch = False
if False and DescentRatio < 1e-2 and DIISTrigger==0:
print 'Do DIIS'
DIISTrigger = 2
DIIS = DIISExtrapolator()
#print 'Switching to BFGS'
#H = BFGSInvHessian(N)
#gamma = dot(s, y) / dot(y, y)
#H.SetToScaledIdentity(gamma)
###################################################
# Accept step: update function value and gradient #
###################################################
if AcceptStep:
x = xnew
df_x = df_xnew
f_x = f_xnew
norm_g = norm_gnew
print "Iteration %d: f(x) = %f (%fx), ||f'(x)|| = %f, || dx || = %f, descent angle = %f" \
% (k, f_x, DescentRatio, norm_g, norm_s, DescentAngle)
if k == maxiter - 1: print 'Maximum number of iterations reached'
print 'Quasi-Newton done'
"""
W = ApproxHessian()
W.SetToNumericalHessian(df, x)
Hess = W.GetHessian()
from numpy.linalg import svd
for eigval in svd(Hess)[1]:
print eigval
"""
exit()
return x
@KLEMokoena
Copy link

MY MAN! MY BOY!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment