Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save jianminchen/a4318ff1f5e747db70b9954c7d4b6f94 to your computer and use it in GitHub Desktop.
Save jianminchen/a4318ff1f5e747db70b9954c7d4b6f94 to your computer and use it in GitHub Desktop.
Leetcode 333 - largest BST subtree - study code from the blog: http://www.cnblogs.com/grandyang/p/5188938.html
/*
Leetcode 333: Largest BST subtree
http://www.cnblogs.com/grandyang/p/5188938.html
Julia likes to review the third algorithm with time complexity O(n).
*** depth first search ***
题目中的Follow up让我们用O(n)的时间复杂度来解决问题,我们还是采用 DFS 的思想来解题,由于时间复杂度的限制,只允许
我们遍历一次整个二叉树,由于满足题目要求的二叉搜索子树必定是有叶节点的,所以我们的思路就是先递归到最左子节点,
然后逐层往上递归,对于每一个节点,我们都记录当前最大的 BST 的节点数,当做为左子树的最大值,和做为右子树的最小值,
当每次遇到左子节点不存在或者当前节点值大于左子树的最大值,且右子树不存在或者当前节点值小于右子树的最小数时,说明
BST 的节点数又增加了一个,我们更新结果及其参数,如果当前节点不是 BST 的节点,那么我们更新 BST 的节点数 res 为左右子
节点的各自的 BST 的节点数的较大值,参见代码如下:
*/
class Solution {
public:
int largestBSTSubtree(TreeNode* root) {
int res = 0, mn = INT_MIN, mx = INT_MAX;
bool d = isValidBST(root, mn, mx, res);
return res;
}
bool isValidBST(TreeNode *root, int &mn, int &mx, int &res) {
if (!root) return true;
int left_n = 0, right_n = 0, left_mn = INT_MIN;
int right_mn = INT_MIN, left_mx = INT_MAX, right_mx = INT_MAX;
bool left = isValidBST(root->left, left_mn, left_mx, left_n);
bool right = isValidBST(root->right, right_mn, right_mx, right_n);
if (left && right) {
if ((!root->left || root->val > left_mx) && (!root->right || root->val < right_mn))
{
res = left_n + right_n + 1;
mn = root->left ? left_mn : root->val;
mx = root->right ? right_mx : root->val;
return true;
}
}
res = max(left_n, right_n);
return false;
}
};
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment