-
-
Save jimpea/4bf717e62d4ac432b23134c59965a8aa to your computer and use it in GitHub Desktop.
/* | |
Append two ranges horizontally. | |
Inputs: | |
- range1: the first range | |
- range2: the second range | |
- default: the value entered into missing rows. | |
Return: The merged ranges, with empty rows filled with the default value. Missing | |
value within either of the two ranges filled with zeros (0). The number of rows | |
equals that of the range with the greatest number of rows and the number of columns | |
is the sum of the columns in each input range. | |
Example: Merge the ranges E1:F3 and H1:I2 with cells in the missing row marked as "na". | |
=APPENDRANGEH(E1:F3,H1:I2,"na") | |
*/ | |
APPENDRANGEH = LAMBDA(range1, range2, default, | |
LET( | |
rows1, ROWS(range1), | |
rows2, ROWS(range2), | |
cols1, COLUMNS(range1), | |
cols2, COLUMNS(range2), | |
rowindex, SEQUENCE(MAX(rows1, rows2)), | |
colindex, SEQUENCE(1, cols1 + cols2), | |
result, IF( | |
colindex <= cols1, | |
INDEX(range1, rowindex, colindex), | |
INDEX(range2, rowindex, colindex - cols1) | |
), | |
IFERROR(result, default) | |
) | |
); | |
/* | |
Append two ranges vertically. | |
Inputs: | |
- range1: the first range | |
- range2: the second range | |
- default: the value entered into missing rows. | |
Return: The merged ranges, with empty columns filled with the default value. Missing | |
values within either of the two ranges filled with zeros (0). The number of columns | |
equals that of the range with the greatest number of columnss and the number of rows | |
is the sum of the rows in each input range. | |
Example: Merge the ranges A1:C2 and A4:B5 with cells in the missing column in the second | |
range marked as "missing". | |
=APPENDRANGEV(A1:C2,A4:B5,"missing") | |
range(A1:C2) | |
1 2 3 | |
4 5 6 | |
range(A4:B5) | |
10 | |
30 40 | |
gives the following output: | |
1 2 3 | |
4 5 6 | |
10 0 missing | |
30 40 missing | |
Note the second range has one fewer columns than the first, these positions are marked by | |
'missing' in the output'. The second range also only has one value in the first row. This | |
is replaced by a zero(0) in the output. | |
*/ | |
APPENDRANGEV = LAMBDA(range1, range2, default, | |
LET( | |
rows1, ROWS(range1), | |
rows2, ROWS(range2), | |
cols1, COLUMNS(range1), | |
cols2, COLUMNS(range2), | |
rowindex, SEQUENCE(rows1 + rows2), | |
colindex, SEQUENCE(1, MAX(cols1, cols2)), | |
result, IF( | |
rowindex <= rows1, | |
INDEX(range1, rowindex, colindex), | |
INDEX(range2, rowindex - rows1, colindex) | |
), | |
IFERROR(result, default) | |
) | |
); | |
/* | |
Convert an m x n range to an m*n x 1 range | |
Example: flatten the range in A1# | |
=FLATTEN(A1#) | |
inputs: | |
- array: the cell range to flatten | |
Return:: | |
- A list of the cells in the array. Empty cells in the range | |
include as zero (0) in the list. | |
*/ | |
FLATTEN = LAMBDA(array, | |
LET( | |
rows_, ROWS(array), | |
cols_, COLUMNS(array), | |
seq_, SEQUENCE(rows_ * cols_, 1, 0, 1), | |
row_, INT(seq_ / cols_), | |
col_, MOD(seq_, cols_), | |
INDEX(array, row_ + 1, col_ + 1) | |
) | |
); | |
/* Example least squares fit to a first order polynomial. | |
Inputs: Note the input_ and response_ arrays correspond to the 'standard curve' | |
used to build the linear model. Both ranges must be equal length. | |
- input_: the input ('x values') | |
- response_: the response to the input ('y values') | |
- test_: m x 1 array of test inputs | |
Return: | |
- The response of the linear model to the test_ inputs. | |
*/ | |
LINFIT = LAMBDA(input_, response_, test_, | |
iferror( | |
LET( | |
total_rows_, COUNT(test_), | |
ones_, SEQUENCE(total_rows_, 1, 1, 0), | |
coeffs_, LINEST(response_, input_), | |
INDEX(coeffs_, 1, 2) * ones_ + INDEX(coeffs_, 1, 1) * test_ | |
), | |
"error: inputs and response must be same size") | |
); | |
/* | |
implementation of Simpson's rule to calculate definite integral | |
\int_a^b f(x) dx \approx \frac{b - a}{6}\left[f(a) + 4f(\frac{a + b}{2}) + f(b)\right] | |
Inputs: | |
- lower: lower limit | |
- upper: upper limit | |
- dx: interval | |
- f: function that maps the array to output | |
Example: Calculate the area under the curve (x+1)/(x+2), defined by the lambda function, | |
from the lower, upper and dx in cells O6, O7 and O8. | |
=SIMPSON(O6,O7,O8,LAMBDA(n, (n + 1)/ (n + 2))) | |
*/ | |
SIMPSON = LAMBDA(lower,upper,dx,f, | |
LET( | |
seq_,SEQUENCE(1+(upper-lower)/dx,1,lower,dx), | |
REDUCE( | |
0, | |
seq_, | |
LAMBDA(acc,b, | |
acc + | |
((dx) / 6) * | |
(f(b - dx) + 4 * f((2 * b - dx) / 2) + f(b)) | |
) | |
))); | |
/* | |
Remove blanks cells from a single row or column. | |
Input: | |
array_list: a list either m x 1 or 1 x n. | |
Return: | |
list with blanks removed | |
*/ | |
NOBLANK = LAMBDA(array_list, | |
FILTER(array_list, | |
array_list <> "", | |
"" | |
) | |
); | |
/* | |
Example factorial implementation using recursion | |
Inputs: | |
- n: the integer argument | |
Return: | |
- The factorial of the input n | |
Of course, Excel already has a FACT function, which works with arrays | |
as the input. This version only works with a single value: | |
Example, get the factorial of the integer in cell A2: | |
=jp.MYFACT(A2) | |
To apply this function to an array in cell A2#, wrap it into a MAP | |
function: | |
=LAMBDA(array, MAP(array, LAMBDA(n, jp.MYFACT(n))))(A2#) | |
*/ | |
MYFACT = LAMBDA(n, IF(n < 2, 1, n * MYFACT(n - 1))); | |
/* Example fibonacci implementation using recursion | |
F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2} | |
Inputs: | |
- n1_: The first initial term F_0 | |
- n2_: The second initial term F_1 | |
- c_: the number of times to count up the sequence. | |
Example: to find the third Fibonacci number starting from 0, 1: | |
= jp.MYFIB(0,1,n) | |
As with the MYFACT function, wrap this in a MAP function to work with an array | |
for instance for an array in cells A4:A11: | |
=LAMBDA(array, MAP(array, LAMBDA(n, jp.MYFIB(0,1,n))))(A4:A11) | |
*/ | |
MYFIB = LAMBDA(n1_, n2_, c_, | |
IF(c_ < 1, n1_ + n2_, MYFIB(n2_, n1_ + n2_, c_ - 1)) | |
); | |
/* | |
Implementation of Markov chain | |
Inputs: | |
m: Left Stochastic matrix that describes the transitions of a Markov Chain. | |
v: initial vector in chain | |
n: length of chain | |
Return: | |
The vector in the state reached after n interations | |
Example: | |
With a 3 by 3 matrix defined in $B$2:$D$4 and a 3 by 1 vector in $B$7:$B$9, | |
Using 3 iterations, the following returns a 3 by 1 vector: | |
=MARKOV($B$2:$D$4, $B$7:$B$9, 3) | |
*/ | |
MARKOV = Lambda(m, v, n, | |
if(n=0, | |
v, | |
Markov(m, mmult(m, v), n-1))); | |
// Return a version 4 UUID (aka GUID) | |
// example from <https://stackoverflow.com/questions/7031347> | |
// The first character of the third group is always 4 to | |
// signify a V4 UUID per RFC 4122. The first character of the | |
// fourth group is always between 8 and b, also per RFC 4122. | |
UUID = LAMBDA( | |
LOWER( | |
CONCATENATE( | |
DEC2HEX(RANDBETWEEN(0,4294967295),8), | |
"-", | |
DEC2HEX(RANDBETWEEN(0,65535),4), | |
"-", | |
DEC2HEX(RANDBETWEEN(16384,20479),4), | |
"-", | |
DEC2HEX(RANDBETWEEN(32768,49151),4), | |
"-", | |
DEC2HEX(RANDBETWEEN(0,65535),4), | |
DEC2HEX(RANDBETWEEN(0,4294967295),8) | |
) | |
) | |
); | |
/* | |
Fold up a list to an array -- for instance a list of 12 values | |
can fold into a 3 by 4, 4 by 3, 2 by 6, 6 by 2, 1 by 12 or 12 by 1 array. | |
Inputs: | |
data - a list of values. This must contain rows * cols elements. | |
rows - number of rows in the output array | |
cols - number of cols in the output array | |
Return: | |
an array rows x cols | |
Raises: | |
#VALUE! error on worksheet if data does not contain rows * cols | |
elements. | |
*/ | |
fold = lambda(data, rows, cols, | |
let( | |
lvalues_, sequence(rows, cols, 0, 1), | |
larray_, sequence(rows*cols, 1, 0, 1), | |
xlookup(lvalues_, larray_, data) | |
)); | |
/* | |
The cumulative values of an nx1 array | |
inputs: | |
array_, an n x 1 array | |
return: An nx1 array of cumulative values derived from the input | |
Example: calculate the cumulative values of the array in cells | |
A1:A5: | |
=CUMULATOR(A1:A5) | |
*/ | |
CUMULATOR = LAMBDA(array_, | |
LET( | |
seq_,SEQUENCE(COUNT(array_),1,1,1), | |
MAP( | |
seq_, | |
LAMBDA(n,SUM(INDEX(array_,SEQUENCE(n,1,1,1)))) | |
) | |
) | |
); | |
// mark data with user-defined upper and lower limits | |
// | |
// inputs: | |
// data: numerical array | |
// lower: the lower limit | |
// upper: the upper limit | |
// return: | |
// array of shape(data), elements set to -1, 0 or 1 according to | |
// less than lower limit, between limits or more that upper limit | |
MARKLIMITS = LAMBDA(data,lower, upper, | |
LET( | |
mark, 0, | |
map(data, lambda(x, if(x > upper, 1, if(x < lower, -1, 0)))) | |
) | |
); | |
// Mark data with upper and lower limits | |
// Assume: | |
// - the data is normally distributed | |
// - the data is numeric | |
// - the data is in a contiguous range (array) | |
// - the data is normally distributed. | |
// If not normally distributed, set your own limits | |
// and use the MARKLIMITS formula instead | |
// | |
// Depends on the MARKLIMITS formula | |
// | |
// Inputs: | |
// data: numerical array | |
// alpha: Defines the uppar and lower limit | |
// Return: | |
// array of same dimension as input data marked | |
// 1: over upper limit, 0: between limits, -1: below lower limit | |
// | |
// Example: | |
// `=mark.limits.2T(B18#, D16)` | |
// data in cell `B18#`, the alpha value in cell `D16` | |
// | |
// for instance, | |
// set alpha = 0.1 to give the 10% - 90% interval | |
// set alpha = 0.05 to give the 5% - 95% interval | |
// set alpha = 0.025 to give the 2.5% - 97.5% interval | |
MARKLIMITS2T = LAMBDA(data,alpha, | |
LET( | |
mean, average(data), | |
zl, norm.inv(alpha, 0, 1), | |
zu, norm.inv(1 - alpha, 0, 1), | |
lower_limit, mean + zl * STDEV.S(data), | |
upper_limit, mean + zu * STDEV.S(data), | |
MARKLIMITS(data, lower_limit, upper_limit) | |
//CHOOSE({1,2, 3, 4}, zl, zu, lower_limit, upper_limit) | |
) | |
); | |
//Count the number of repeated values in a list. | |
//Assumes the list is vertical. | |
// | |
// inputs: | |
// range: a | |
// output: | |
// A. n x 2 sorted list of the unique values in the input list and the counts. | |
// | |
// Example: | |
// =count_uniques(tbl_names[initials]) | |
// | |
UNIQUE_COUNTS = LAMBDA(range, | |
LET( | |
uniques, SORT(UNIQUE(range)), | |
counts, MAP(uniques, LAMBDA(s, SUM(IF(s = range, 1, 0)))), | |
SORTBY(CHOOSE({1, 2}, uniques, counts), counts, -1) | |
) | |
); | |
// Filter a list by their multiplicity, filtered by a | |
// limiting value | |
// | |
// assumes: the input list is vertical n x 1 | |
// | |
// inputs: | |
// range: the input array (n x 1) | |
// cutoff: The lower limit cutoff | |
// | |
// returns: | |
// n X 2 array from the range giving the multiplicity, ordered | |
// according to multiplicity. | |
// | |
// example: | |
// List the repleated elements in a list of names, restricting | |
// to multiplicity above 2: | |
// `=jp.FILTER_UNIQUE_COUNTS(tbl_names[fname], 2)` | |
FILTER_UNIQUE_COUNTS = LAMBDA(range, cutoff, | |
LET( | |
input_array, UNIQUE_COUNTS(range), | |
FILTER(input_array, CHOOSECOLS(input_array,2) > cutoff))); | |
// Output data to given number of significant figures | |
// | |
// inputs: | |
// data: An excel range containing numerical data | |
// sig_figs: number of sugnificant figures | |
// return: the data limited to the given number of significant figures | |
// | |
// Example: | |
// Output the data in range 'data_' to the number of significant figures | |
// given in 'sig_figs' | |
SIG_FIGS = LAMBDA(data, sig_figs, | |
ROUND(data, sig_figs - INT(LOG10(ABS(data))) | |
) | |
); | |
newton_raphson = LAMBDA(guess, afun, delta, | |
/* Newton Raphson method for estimating roots. **Note** Does | |
not work for complex roots. | |
args: | |
guess: user guess for the root | |
afun: a LAMBDA expression that takes one argument | |
delta: serves both as the calculation cut-off limlit and | |
the delta interval to use in calculating the function | |
derivative | |
return: | |
The best guess for the root. | |
Example: | |
This expression returns a root for the expression passed as the LAMBDA | |
expression (-3.23606798) | |
=newton_raphson(-5, LAMBDA(x, x^2 + 2*x -4), 0.000011) | |
For the other root (1.23067978): | |
=newton_raphson(2, LAMBDA(x, x^2 + 2*x -4), 0.000011) | |
*/ | |
LET( | |
f1_, afun(guess), | |
f2_, (afun(guess + delta) - f1_)/delta, | |
new_guess_, guess - f1_/f2_, | |
IF(ABS(f1_) < delta, new_guess_, newton_raphson(new_guess_, afun, delta)) | |
) | |
); | |
/* | |
Normalise a matrix | |
Input: | |
- M: range of numerical data | |
Return: | |
- The data in M normalised to mean:0 and stdev: 1 | |
*/ | |
mnorm = LAMBDA(M, | |
LET( | |
means, BYCOL(M, LAMBDA(col, AVERAGE(col))), | |
stdevs, BYCOL(M, LAMBDA(col, STDEV.S(col))), | |
(M - means) / stdevs | |
) | |
); | |
/* | |
Euclidian distance | |
Input: | |
- P: a data point from a row of numeric data | |
Return: | |
- The Euclidiean distance between the point and the origin | |
*/ | |
EuclidianD = LAMBDA(P, SQRT(SUM(P ^ 2))); | |
/* | |
Unpivot an Excel table | |
Users may need to collect data directly into an excel range using the intersection | |
between column and rows to capture information. For instance a microtitre plate | |
has rows labelled A..H and columns labelled 1..12 with data collected on the (row, column) | |
pairs. | |
Inputs: | |
input: An excel range including the column titles and rows. | |
Return: The pivoted record putting each (row, column, data) record | |
On eache line. | |
Example: | |
`=unpivot(A3:H6)` | |
Here, the column headers are in cells A4:A6 and the row headers in cells A4:C4. | |
Note that the upperleft corner cell is blank. The data is in cells B4:H6. This | |
gives 21 cells of data -- one for each row, column pair. The output includes a | |
a header row ["row", "col", "data"]. The user can now select the formula cell | |
and insert a pivot table | |
*/ | |
unpivot = LAMBDA(input, | |
let( | |
data, take(input, -(ROWS(input)-1), -(COLUMNS(input) - 1)), | |
data_column_count, COLUMNS(data), | |
data_row_count, ROWS(data), | |
row_sequence, SEQUENCE(data_row_count, 1, 1, 1), | |
col_sequence, SEQUENCE(data_column_count, 1, 1, 1), | |
row_names, INDEX(input, row_sequence + 1, 1), | |
col_names, INDEX(input, 1, col_sequence + 1), | |
data_count, data_column_count * data_row_count, | |
data_sequence, SEQUENCE(data_count, 1, 0, 1), | |
stacked, hstack( | |
index(row_names, int(data_sequence/data_column_count) + 1), | |
index(col_names, MOD(data_sequence, data_column_count) + 1), | |
tocol(data) | |
), | |
headers, {"row","col","data"}, | |
vstack(headers, stacked) | |
) | |
); | |
/* find common elements in two ranges | |
Args: | |
range_a: the first range to test | |
range_b: the second range to test | |
Return: | |
List of common elements | |
*/ | |
common=LAMBDA(range_a, range_b, | |
LET( | |
message, "not_found", | |
list_a, trim(TOCOL(range_a)), | |
list_b, trim(TOCOL(range_b)), | |
mapped, MAP(list_a, LAMBDA(test, FILTER(list_b, list_b = test, message))), | |
unique(FILTER(mapped, mapped <> message)) | |
) | |
); | |
// Interpolate for y between two points (ax, ay), (bx, by) at an intermediate | |
// value x | |
// Assumes: | |
// bx != ax | |
// by != ay | |
// bx - ax != 0 | |
interpy = lambda(ax,ay, bx, by, x, | |
let( | |
da, bx - ax, | |
db, by - ay, | |
slope, db/da, | |
ay + (x - ax)*slope | |
) | |
); | |
// Interpolate for x between two points (ax, ay), (bx, by) at an intermediate | |
// value y | |
// Assumes: same as for interpy | |
interpx = lambda(ax, ay, bx, by, y, | |
let( | |
da, bx - ax, | |
db, by - ay, | |
slope, db/da, | |
ax + (y - ay)/slope | |
) | |
); |
Thanks @Excali78 for the feedback, I have updated the gist.
Hi jimpea,
You might have a look to Ismail HOSEN video and link to his lambda functions in the comments section, REPEATEACHROWNTIMES() and VSTACKNTIMES(): https://www.youtube.com/watch?v=oP82s9roDuQ
I join you 2 LAMBDAs that might interest your readers, you migth adapt / translate the parameters (now in French) and add them to your repository.
ROUNDTOSUM(myTable, [targetTotal], [RoundingStep]) : rounds a table to a target total with a certain rounding step. It rounds with the greatest remainder method, and in cas of ex-aequos, it prioritises small absolute values (greatest relative errors) :
=LAMBDA(maTable,[totalCible],[pasArrondi],
LET( pas,IF(ISOMITTED(pasArrondi),1,pasArrondi),
somTable,SUM(maTable),
totCib,MROUND(IF(ISOMITTED(totalCible), somTable,totalCible),pas),
nbElements,ROWS(maTable)COLUMNS(maTable),
homothetie,maTable(totCib/somTable),
arrondiInf,pas*INT(homothetie/pas),
nbPasADistribuer, ROUND((totCib-SUM(arrondiInf))/pas,0),
restesAvecTableEtIndex,HSTACK(TOCOL(homothetie-arrondiInf),TOCOL(maTable),SEQUENCE(nbElements)),
restesTries,SORTBY(restesAvecTableEtIndex,INDEX(restesAvecTableEtIndex,0,1),-1,INDEX(restesAvecTableEtIndex,0,2),1),
restesTriesAvecPas,HSTACK(restesTries,IF(SEQUENCE(nbElements)<=nbPasADistribuer,1,0)),
indicesTriesAvecPas,SORTBY(restesTriesAvecPas,INDEX(restesTriesAvecPas,0,3)),
restesAvecTableEtIndex
))
The 2nd formula creates a rounded table so as to match the rows and columns subtotals of a contingency table (expected values):
PRORATA.RC(rowOfColumnsTotals, columnOfRowsTotals, nDigits)
=LAMBDA(ligneTotauxColonnes,colonneTotauxLignes,nDigits,
LET(total,SUM(ligneTotauxColonnes),
nCol,COLUMNS(ligneTotauxColonnes),
IF(total<>SUM(colonneTotauxLignes),"sous-totaux LC incompatibles entre eux !",
LET(matrice,ligneTotauxColonnes*colonneTotauxLignes/total,
MMULT(ROUND(MMULT(matrice,MINTEG(nCol)),nDigits),MINVERSE(MINTEG(nCol)))))))
Helper function:
MINTEG(n) : returns a matrix of dimension n for computing the integration/cumulative sum of a matrix of n columns. Basically, it returns a triangular matrix with 1's and 0's.
=LAMBDA(n,LET(dim,n,--(SEQUENCE(,dim,1)>=SEQUENCE(dim,,1))))
Hope this helps,
Thierry
Thanks a lot for sharing.
For the newton_raphson(), it might be useful to enclose the test in an ABS function to ensure we are close to zero and not only inferior to delta:
Instead of
IF(f1_ < delta ...
read
IF(ABS(f1_ < delta)...
Best Regards