Last active
November 8, 2024 06:57
-
-
Save jo-chemla/258e6e40d3d6c2220b29518ff3c17c40 to your computer and use it in GitHub Desktop.
Quick utility to crop a kapture images and adapt intrinsics
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# py kapture-cropper.py -i dataset-kapture\ --border_px 0 --scale_factor 1 -v | |
import kapture | |
import kapture.io.csv as csv | |
from PIL import Image | |
from kapture.io.csv import kapture_to_dir | |
import os, logging, argparse | |
import kapture.utils.logging | |
logger = logging.getLogger("kapture-cropper") | |
DEFAULT_FOCAL_LENGTH_FACTOR = 1.2 | |
EPSILON = 1e-5 | |
def crop_command_line() -> None: | |
""" | |
Crop a set of raster images from a kapture project, adapting their intrinsics using the parameters given on the command line. | |
""" | |
parser = argparse.ArgumentParser( | |
description="Crop a set of raster images from a kapture project, adapting their intrinsics" | |
) | |
parser.add_argument( | |
"-i", "--input", type=str, required=True, help="input path to kapture project" | |
) | |
parser.add_argument( | |
"-b", | |
"--border_px", | |
type=int, | |
required=False, | |
default=0, | |
help="Crop amount in pixels, for each side the same", | |
) | |
parser.add_argument( | |
"-s", | |
"--scale_factor", | |
type=check_positive_strictly, | |
required=False, | |
default=1, | |
help="Rescale factor, to change the coordinate system of cams and points3d", | |
) | |
# Logging | |
parser_verbosity = parser.add_mutually_exclusive_group() | |
parser_verbosity.add_argument( | |
"-v", | |
"--verbose", | |
nargs="?", | |
default=logging.WARNING, | |
const=logging.INFO, | |
action=kapture.utils.logging.VerbosityParser, | |
help="verbosity level (debug, info, warning, critical, ... or int value) [warning]", | |
) | |
parser_verbosity.add_argument( | |
"-q", | |
"--silent", | |
"--quiet", | |
action="store_const", | |
dest="verbose", | |
const=logging.CRITICAL, | |
) | |
# Parse args and do the crop | |
args = parser.parse_args() | |
logger.setLevel(args.verbose) | |
if args.verbose <= logging.DEBUG: # also let kapture express its logs | |
kapture.utils.logging.getLogger().setLevel(args.verbose) | |
kapture_crop(args.input, args.border_px, args.scale_factor) | |
def check_positive_strictly(value): | |
try: | |
value = float(value) | |
if value <= 0: | |
raise argparse.ArgumentTypeError( | |
"{} is not a positive number".format(value) | |
) | |
except ValueError: | |
raise Exception("{} is not an integer".format(value)) | |
return value | |
def rescale_kapture_coords(kapture_data, scale_factor): | |
# Rescale sensors' trajectories | |
trajectories = kapture_data.trajectories | |
for traj_idx in trajectories: | |
for poseTransform in trajectories[traj_idx].values(): | |
poseTransform.rescale(scale_factor) | |
# rescale points3d observations | |
points3d = kapture_data.points3d | |
points3d[:, :3] *= scale_factor | |
def kapture_crop(kapture_dir_path, border_px=0, scale_factor=1): | |
# Create dir and move other files | |
if border_px != 0: | |
image_dir_path = os.path.join(kapture_dir_path, "sensors/records_data") | |
original_dir_path = os.path.join( | |
kapture_dir_path, "sensors/records_data_original" | |
) | |
if os.path.exists(original_dir_path): | |
logger.error( | |
f"{original_dir_path} already exists, you probably already applied the cropping" | |
) | |
return | |
os.rename(image_dir_path, original_dir_path) | |
os.makedirs(image_dir_path, exist_ok=True) | |
# | |
# with csv.get_all_tar_handlers(kapture_dir_path) as tar_handlers: | |
pairsfile_path = None | |
logger.info(f"Reading Kapture project from {kapture_dir_path}...") | |
kapture_data = csv.kapture_from_dir( | |
kapture_dir_path, | |
pairsfile_path, | |
# tar_handlers=tar_handlers | |
) | |
records_camera = kapture_data.records_camera | |
sensors = kapture_data.sensors | |
logger.info( | |
f"Found {len(records_camera)} records_camera and {len(sensors)} sensors" | |
) | |
# | |
# Could do the conversion in place if no crop via PILLOW | |
# converted_sensors = [ | |
# (cam_id, get_cropped_sensor(cam, border_px)) for cam_id, cam in sensors.items() | |
# ] | |
# cropped_kapture = kapture.Kapture(sensors=converted_sensors, records_camera=records_camera) | |
# | |
# Loop for image crop via pillow + sensor crop via kapture | |
logger.info("Cropping image rasters + computing cropped kapture sensors...") | |
# handler = logging.StreamHandler() | |
for handler in logger.handlers: | |
handler.terminator = "\r" | |
for cam_id in records_camera: # cam = records_camera[0] | |
cam = records_camera[cam_id] | |
for ( | |
sensor_id, | |
img_fp, | |
) in cam.items(): # sensor_id, img_fp = list(cam.items())[0] | |
sensor = sensors[sensor_id] | |
logger.info( | |
f"Cropping image with id {sensor_id} and fp {img_fp}, sensor {sensor}", | |
# end="\r", | |
) | |
# Always simplify sensor model if radial distortion coefficients are zero | |
cropped_sensor = simplify_sensors_model(sensor) | |
# Crop sensor if user asks for it | |
if border_px != 0: | |
cropped_sensor = get_cropped_sensor(cropped_sensor, border_px) | |
# Crop via Pillow | |
with Image.open(os.path.join(original_dir_path, img_fp)) as im: | |
width, height = im.size | |
left, top, right, bottom = ( | |
border_px, | |
border_px, | |
width - border_px, | |
height - border_px, | |
) | |
cropped_im = im.crop((left, top, right, bottom)) | |
cropped_im.save(os.path.join(image_dir_path, img_fp)) | |
# | |
# write back that cropped sensor to the current kapture db | |
sensors[sensor_id] = cropped_sensor | |
# Rescale coordinate system | |
if scale_factor != 1: | |
rescale_kapture_coords(kapture_data, scale_factor) | |
# Export to disk | |
for handler in logger.handlers: | |
handler.terminator = "\n" | |
logger.info("\nImage raster files cropped, Writing cropped data to Kapture file...") | |
cropped_kapture = kapture.Kapture( | |
sensors=sensors, | |
records_camera=records_camera, | |
trajectories=kapture_data.trajectories, | |
points3d=kapture_data.points3d, | |
) | |
kapture_to_dir(kapture_dir_path, cropped_kapture) | |
# Adapted from get_colmap_camera in https://github.com/naver/kapture/blob/e58e244f35fe8db47dbb2b149178456f513ef6f8/kapture/converter/colmap/cameras.py#L42 | |
def get_cropped_sensor(camera: kapture.Camera, border: int): | |
""" | |
Compute the cropped camera definition - uniform border width given in pixels | |
# | |
:param camera: a kapture camera definition | |
:param border: a pixel crop count | |
:return: cropped camera parameters. | |
""" | |
assert isinstance(camera, kapture.Camera) | |
assert len(camera.camera_params) >= 2 | |
# | |
old_width = camera.camera_params[0] | |
old_height = camera.camera_params[1] | |
# | |
# Update width with cropped value (in pixels units) | |
width = old_width - 2 * border | |
height = old_height - 2 * border | |
# will apply to cx,cy and focal-length | |
if camera.camera_type in [ | |
kapture.CameraType.SIMPLE_PINHOLE, | |
kapture.CameraType.SIMPLE_RADIAL, | |
kapture.CameraType.RADIAL, | |
]: | |
# [SIMPLE_]RADIAL params: w, h, f, cx, cy, k1 [, k2] | |
params = camera.camera_params[2:] | |
params[0] *= width / old_width # focal f | |
params[1] -= border # cx | |
params[2] -= border # cy | |
elif camera.camera_type in [ | |
kapture.CameraType.PINHOLE, | |
kapture.CameraType.OPENCV, | |
kapture.CameraType.FULL_OPENCV, | |
]: | |
# PINHOLE/OPENCV params: w, h, fx, fy, cx, cy, k1 [, k2] | |
params = camera.camera_params[2:] | |
params[0] *= width / old_width # focal f | |
params[1] *= width / old_width # focal f | |
params[2] -= border # cx | |
params[3] -= border # cy | |
else: | |
raise ValueError( | |
f"This sensor model: {camera.camera_type} is not supported by the intrinsics img cropper yet" | |
) | |
return kapture.Camera(camera.camera_type, [width, height, *params]) | |
# The following table stores distortion_idx and camera_type for a given input camera_type for the simplified version | |
# { input_camera_type: (distortion_idx, simplified_camera_type) } | |
# [SIMPLE_]RADIAL params: w, h, f, cx, cy | k1 [, k2] | |
# [FULL_]OPENCV params: w, h, fx, fy, cx, cy | k1, k2, p1, p2 [, k3, k4, k5, k6] | |
# | |
# See https://github.com/colmap/colmap/blob/main/src/colmap/sensor/models.h | |
# UNKNOWN_CAMERA w, h | |
# SIMPLE_PINHOLE w, h, f, cx, cy | |
# PINHOLE w, h, fx, fy, cx, cy | |
# SIMPLE_RADIAL w, h, f, cx, cy, k | |
# RADIAL w, h, f, cx, cy, k1, k2 | |
# OPENCV w, h, fx, fy, cx, cy, k1, k2, p1, p2 | |
# FULL_OPENCV w, h, fx, fy, cx, cy, k1, k2, p1, p2, k3, k4, k5, k6 | |
SENSOR_SIMPLIFICATION_TABLE = { | |
kapture.CameraType.SIMPLE_RADIAL: (5, kapture.CameraType.SIMPLE_PINHOLE), | |
kapture.CameraType.RADIAL: (5, kapture.CameraType.SIMPLE_PINHOLE), | |
kapture.CameraType.OPENCV: (6, kapture.CameraType.PINHOLE), | |
kapture.CameraType.FULL_OPENCV: (6, kapture.CameraType.PINHOLE), | |
} | |
def simplify_sensors_model(camera: kapture.Camera): | |
""" | |
Convert the sensor to pinhole if it is a radial which has zero k1 k2 distortion coefficients | |
# | |
:param camera: a kapture camera definition | |
:return: cropped camera parameters. | |
""" | |
assert isinstance(camera, kapture.Camera) | |
assert len(camera.camera_params) >= 2 | |
# | |
if camera.camera_type in SENSOR_SIMPLIFICATION_TABLE: | |
distortion_idx, camera_type = SENSOR_SIMPLIFICATION_TABLE[camera.camera_type] | |
else: | |
raise ValueError( | |
f"This sensor model: {camera.camera_type} is not supported by the sensor simplifier yet" | |
) | |
# Distangle pinhole params from distortion params, check if distortion is zero, otherwise return original camera | |
pinhole_params = camera.camera_params[:distortion_idx] # w, h, f[x, fy], cx, cy | |
distortion_params = camera.camera_params[distortion_idx:] # k... | |
if sum([x**2 for x in distortion_params]) <= EPSILON: | |
camera_params = pinhole_params | |
return kapture.Camera(camera_type, camera_params) | |
else: | |
return camera | |
if __name__ == "__main__": | |
crop_command_line() | |
""" | |
:: Export from RC an imagelist.lst + bundle.out | |
:: Convert RC imagelist.lst to imagelist-local.lst | |
:: Install Kapture | |
pip install kapture | |
:: Bundler -> Kapture | |
py C:\Python310\Scripts\kapture_import_bundler.py -v debug -i dataset-bundler\bundle.out | |
-l dataset-bundler\imagelist-local.lst -im dataset-bundler\images | |
--image_transfer link_absolute -o dataset-kapture --add-reconstruction | |
:: Kapture crop remove black strips | |
py kapture-cropper.py -v info -i dataset-kapture\ --border_px 10 | |
:: Kapture -> Colmap | |
py C:\Python310\Scripts\kapture_export_colmap.py -v debug -f -i dataset-kapture | |
-db dataset-colmap\colmap.db --reconstruction dataset-colmap\reconstruction-txt | |
:: Optional Colmap txt to bin conversion | |
mkdir dataset-colmap\sparse\0 | |
COLMAP.bat model_converter --input_path dataset-colmap\reconstruction-txt | |
--output_path dataset-colmap\sparse\0 --output_type BIN | |
:: Convert cameras from RADIAL to PINHOLE NOT NEEDED ANYMORE | |
:: xcopy dataset-bundler\images dataset-colmap\images /i | |
:: curl https://raw.githubusercontent.com/graphdeco-inria/gaussian-splatting/main/convert.py -o gaussian-splatting-pinhole-cameras-convert.py | |
:: py gaussian-splatting-pinhole-cameras-convert.py -s dataset-colmap --colmap_executable ..\COLMAP-3.8-windows-cuda | |
:: [--resize] #If not resizing, ImageMagick is not needed | |
""" | |
# Convert RC imagelist.lst to imagelist-local.lst | |
"""import os | |
def keep_filename(imagelist): | |
with open(imagelist) as f: | |
filenames = [os.path.split(fp)[1] for fp in f.readlines()] | |
with open(imagelist[:-4] + '-local.lst', 'w') as f_out: | |
f_out.write(''.join(filenames)) | |
keep_filename('dataset-bundler\\imagelist.lst') | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi! I'm so happy to use your code!
I want to get some answer in "nerfstudio-project/nerfstudio#2419"
Thank you!