Skip to content

Instantly share code, notes, and snippets.

@jo32
Created September 21, 2012 05:38
Show Gist options
  • Save jo32/3759900 to your computer and use it in GitHub Desktop.
Save jo32/3759900 to your computer and use it in GitHub Desktop.
Mining the Social Web, Example 1-3
import twitter
#gist https://gist.github.com/1592859
twitter_api=twitter.Twitter(domain="api.twitter.com", api_version='1')
WORLD_WOE_ID = 1 # The Yahoo! Where On Earth ID for the entire world
world_trends = twitter_api.trends._(WORLD_WOE_ID) # get back a callable
print [ trend for trend in world_trends()[0]['trends'] ] # call the callable and iterate through the trends returned
twitter_search = twitter.Twitter(domain="search.twitter.com")
search_results = []
for page in range(1,6):
search_results.append(twitter_search.search(q="barackobama", rpp=100, page=page))
import json
print json.dumps(search_results, sort_keys=True, indent=1)
tweets = []
tweets = [ r['text'] \
for result in search_results \
for r in result['results'] ]
words = []
for t in tweets:
words += [ w for w in t.split() ]
print len(words) # total words
print len(set(words)) # unique words
print 1.0*len(set(words)) / len(words) # lexical diversity
print 1.0*sum([ len(t.split()) for t in tweets ]) / len(tweets) # avg words per tweet
import cPickle
f = open("myData.pickle", "wb")
cPickle.dump(words, f)
f.close()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment