Skip to content

Instantly share code, notes, and snippets.

View joaopedromattos's full-sized avatar
💭
CS PhD Student @ Rice University 🇺🇸 | 🇧🇷

João Pedro Rodrigues Mattos joaopedromattos

💭
CS PhD Student @ Rice University 🇺🇸 | 🇧🇷
View GitHub Profile
@joaopedromattos
joaopedromattos / keras.py
Created July 10, 2021 16:39
Deep Learning Boilerplate
from tensorflow import keras
# Since we only need images from the dataset to encode and decode, we
# won't use the labels.
(train_data, _), (test_data, _) = mnist.load_data()
# Preprocessing here...
input = layers.Input(shape=(28, 28, 1))
This file has been truncated, but you can view the full file.
text,toxic
meu nivel de amizade com isis é ela ter meu insta e eu ter o dela e quando eu penso que não ela manda mensagem “ falano otario ta falando dnv no insta”,1.0
o cara adultera dados que foram desmascarados e ainda quer ficar no governo,1.0
o cara só é simplesmente o maior vencedor da história de futebol tá com 36 anos e tem gás demais e não um gordo com joelho fodido,1.0
eu to chorando vei vsf e eu nem staneio izone nem nada ,1.0
"eleitor do bolsonaro é tão ignorante q não percebeu q a frase abaixo significa o seguinte
“é melhor falar um monte de bosta do que ficar calado”ainda transformaram em imagem bonitinha com citação e data hahhahahahhahahhahah",1.0
vai responder as outras 75 conversas e para de cobrar atenção caralho ,1.0
"tem um do jack com a msm música e agr não sei qual flodar
@joaopedromattos
joaopedromattos / bfs.py
Created June 30, 2021 12:50
BFS Adaptada
import datetime
def check_restrictions(cur, neighbor, graph, min_date, min_processment=None, species=None):
edges = graph.edges[(cur, neighbor)]['transactions']
for i in edges:
if (datetime.datetime.strptime(i['DtEmissao'], '%d/%m/%Y') >= datetime.datetime.strptime(min_date, '%d/%m/%Y')):
return i
return None
We can't make this file beautiful and searchable because it's too large.
Age,Workclass,fnlwgt,Education,Education_Num,Martial_Status,Occupation,Relationship,Race,Sex,Capital_Gain,Capital_Loss,Hours_per_week,Country,Target
25," Private",226802.0," 11th",7.0," Never-married"," Machine-op-inspct"," Own-child"," Black"," Male",0.0,0.0,40.0," United-States"," <=50K."
38," Private",89814.0," HS-grad",9.0," Married-civ-spouse"," Farming-fishing"," Husband"," White"," Male",0.0,0.0,50.0," United-States"," <=50K."
28," Local-gov",336951.0," Assoc-acdm",12.0," Married-civ-spouse"," Protective-serv"," Husband"," White"," Male",0.0,0.0,40.0," United-States"," >50K."
44," Private",160323.0," Some-college",10.0," Married-civ-spouse"," Machine-op-inspct"," Husband"," Black"," Male",7688.0,0.0,40.0," United-States"," >50K."
18,,103497.0," Some-college",10.0," Never-married",," Own-child"," White"," Female",0.0,0.0,30.0," United-States"," <=50K."
34," Private",198693.0," 10th",6.0," Never-married"," Other-service"," Not-in-family"," White"," Male",0.0,0.0,30.0," United-States"," <=50K."
29,,227026