Create a gist now

Instantly share code, notes, and snippets.

What would you like to do?
Comparison of linear-search and binary-search algorithms
Implements linear search and binary search to analyse time complexity.
import random
from matplotlib import pyplot as plt
def linear_search(value, list):
Searches the index of the value in the list.
Returns the number of iterations.
for index, val in enumerate(list):
if value == val:
return index
return index
def binary_search(value, list):
Searches the index of the value in the list using binary search.
Returns the number of iterations.
iterations = 0
index = len(list) // 2
while value != list[index]:
if value > list[index]:
list = list[index:]
list = list[:index]
index = len(list) // 2
iterations += 1
return iterations
def compare_methods(size, n=100):
Returns the average number of iterations for each method to find
a random value in a random list.
values_linear = []
values_binary = []
for _ in range(n):
# Random list
list = random.sample(range(size * 2), size)
list = sorted(list)
# Random value from list
value = random.choice(list)
values_linear.append(linear_search(value, list))
values_binary.append(binary_search(value, list))
return (
sum(values_linear) / len(values_linear),
sum(values_binary) / len(values_binary)
def plot_time_complexity(a=10, b=100, step=10, n=100):
Plots time complexity comparison of both search methods for lists with size
between 'a' and 'b'. Each value is an average of 'n' algorithm runs.
values = [(size, compare_methods(size, n)) for size in range(a, b, step)]
steps = [value[0] for value in values]
values_linear = [value[1][0] for value in values]
values_binary = [value[1][1] for value in values]
plt.plot(steps, values_linear, 'b-', label='Linear search')
plt.plot(steps, values_binary, 'r-', label='Binary search')
plt.title('Average number of iterations by list size')
plt.xlabel('List size')
plt.ylabel('Num. iterations')
plt.legend(loc='upper left')
last_value = (steps[-1], values_binary[-1])
last_position = (
steps[-1] - 0.2*b,
values_binary[-1] + 0.1*b
plt.annotate('~%s' % values_binary[-1], xy=last_value, xytext=last_position,
arrowprops=dict(facecolor='black', shrink=0.05))
if __name__ == '__main__':
plot_time_complexity(10, 1000, 10)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment