Skip to content

Instantly share code, notes, and snippets.

@joelouismarino
Last active October 9, 2023 07:09
Show Gist options
  • Save joelouismarino/a2ede9ab3928f999575423b9887abd14 to your computer and use it in GitHub Desktop.
Save joelouismarino/a2ede9ab3928f999575423b9887abd14 to your computer and use it in GitHub Desktop.
GoogLeNet in Keras

GoogLeNet in Keras

Here is a Keras model of GoogLeNet (a.k.a Inception V1). I created it by converting the GoogLeNet model from Caffe.

GoogLeNet paper:

Going deeper with convolutions.
Szegedy, Christian, et al. 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

Requirements

The code now runs with Python 3.6, Keras 2.2.4, and either Theano 1.0.4 or Tensorflow 1.14.0. You will also need to install the following:

pip install pillow numpy imageio

To switch to the Theano backend, change your ~/.keras/keras.json file to

{"epsilon": 1e-07, "floatx": "float32", "backend": "theano", "image_data_format": "channels_first"}

Or for the Tensorflow backend,

{"epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow", "image_data_format": "channels_first"}

Note that in either case, the code requires the channels_first option for image_data_format.

Running the Demo (googlenet.py)

To create a GoogLeNet model, call the following from within Python:

from googlenet import create_googlenet
model = create_googlenet()

googlenet.py also contains a demo image classification. To run the demo, you will need to install the pre-trained weights and the class labels. You will also need this test image. Once these are downloaded and moved to the working directory, you can run googlenet.py from the terminal:

$ python googlenet.py

which will output the predicted class label for the image.

from __future__ import print_function
import imageio
from PIL import Image
import numpy as np
import keras
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, Dropout, Flatten, Concatenate, Reshape, Activation
from keras.models import Model
from keras.regularizers import l2
from keras.optimizers import SGD
from pool_helper import PoolHelper
from lrn import LRN
if keras.backend.backend() == 'tensorflow':
from keras import backend as K
import tensorflow as tf
from keras.utils.conv_utils import convert_kernel
def create_googlenet(weights_path=None):
# creates GoogLeNet a.k.a. Inception v1 (Szegedy, 2015)
input = Input(shape=(3, 224, 224))
input_pad = ZeroPadding2D(padding=(3, 3))(input)
conv1_7x7_s2 = Conv2D(64, (7,7), strides=(2,2), padding='valid', activation='relu', name='conv1/7x7_s2', kernel_regularizer=l2(0.0002))(input_pad)
conv1_zero_pad = ZeroPadding2D(padding=(1, 1))(conv1_7x7_s2)
pool1_helper = PoolHelper()(conv1_zero_pad)
pool1_3x3_s2 = MaxPooling2D(pool_size=(3,3), strides=(2,2), padding='valid', name='pool1/3x3_s2')(pool1_helper)
pool1_norm1 = LRN(name='pool1/norm1')(pool1_3x3_s2)
conv2_3x3_reduce = Conv2D(64, (1,1), padding='same', activation='relu', name='conv2/3x3_reduce', kernel_regularizer=l2(0.0002))(pool1_norm1)
conv2_3x3 = Conv2D(192, (3,3), padding='same', activation='relu', name='conv2/3x3', kernel_regularizer=l2(0.0002))(conv2_3x3_reduce)
conv2_norm2 = LRN(name='conv2/norm2')(conv2_3x3)
conv2_zero_pad = ZeroPadding2D(padding=(1, 1))(conv2_norm2)
pool2_helper = PoolHelper()(conv2_zero_pad)
pool2_3x3_s2 = MaxPooling2D(pool_size=(3,3), strides=(2,2), padding='valid', name='pool2/3x3_s2')(pool2_helper)
inception_3a_1x1 = Conv2D(64, (1,1), padding='same', activation='relu', name='inception_3a/1x1', kernel_regularizer=l2(0.0002))(pool2_3x3_s2)
inception_3a_3x3_reduce = Conv2D(96, (1,1), padding='same', activation='relu', name='inception_3a/3x3_reduce', kernel_regularizer=l2(0.0002))(pool2_3x3_s2)
inception_3a_3x3_pad = ZeroPadding2D(padding=(1, 1))(inception_3a_3x3_reduce)
inception_3a_3x3 = Conv2D(128, (3,3), padding='valid', activation='relu', name='inception_3a/3x3', kernel_regularizer=l2(0.0002))(inception_3a_3x3_pad)
inception_3a_5x5_reduce = Conv2D(16, (1,1), padding='same', activation='relu', name='inception_3a/5x5_reduce', kernel_regularizer=l2(0.0002))(pool2_3x3_s2)
inception_3a_5x5_pad = ZeroPadding2D(padding=(2, 2))(inception_3a_5x5_reduce)
inception_3a_5x5 = Conv2D(32, (5,5), padding='valid', activation='relu', name='inception_3a/5x5', kernel_regularizer=l2(0.0002))(inception_3a_5x5_pad)
inception_3a_pool = MaxPooling2D(pool_size=(3,3), strides=(1,1), padding='same', name='inception_3a/pool')(pool2_3x3_s2)
inception_3a_pool_proj = Conv2D(32, (1,1), padding='same', activation='relu', name='inception_3a/pool_proj', kernel_regularizer=l2(0.0002))(inception_3a_pool)
inception_3a_output = Concatenate(axis=1, name='inception_3a/output')([inception_3a_1x1,inception_3a_3x3,inception_3a_5x5,inception_3a_pool_proj])
inception_3b_1x1 = Conv2D(128, (1,1), padding='same', activation='relu', name='inception_3b/1x1', kernel_regularizer=l2(0.0002))(inception_3a_output)
inception_3b_3x3_reduce = Conv2D(128, (1,1), padding='same', activation='relu', name='inception_3b/3x3_reduce', kernel_regularizer=l2(0.0002))(inception_3a_output)
inception_3b_3x3_pad = ZeroPadding2D(padding=(1, 1))(inception_3b_3x3_reduce)
inception_3b_3x3 = Conv2D(192, (3,3), padding='valid', activation='relu', name='inception_3b/3x3', kernel_regularizer=l2(0.0002))(inception_3b_3x3_pad)
inception_3b_5x5_reduce = Conv2D(32, (1,1), padding='same', activation='relu', name='inception_3b/5x5_reduce', kernel_regularizer=l2(0.0002))(inception_3a_output)
inception_3b_5x5_pad = ZeroPadding2D(padding=(2, 2))(inception_3b_5x5_reduce)
inception_3b_5x5 = Conv2D(96, (5,5), padding='valid', activation='relu', name='inception_3b/5x5', kernel_regularizer=l2(0.0002))(inception_3b_5x5_pad)
inception_3b_pool = MaxPooling2D(pool_size=(3,3), strides=(1,1), padding='same', name='inception_3b/pool')(inception_3a_output)
inception_3b_pool_proj = Conv2D(64, (1,1), padding='same', activation='relu', name='inception_3b/pool_proj', kernel_regularizer=l2(0.0002))(inception_3b_pool)
inception_3b_output = Concatenate(axis=1, name='inception_3b/output')([inception_3b_1x1,inception_3b_3x3,inception_3b_5x5,inception_3b_pool_proj])
inception_3b_output_zero_pad = ZeroPadding2D(padding=(1, 1))(inception_3b_output)
pool3_helper = PoolHelper()(inception_3b_output_zero_pad)
pool3_3x3_s2 = MaxPooling2D(pool_size=(3,3), strides=(2,2), padding='valid', name='pool3/3x3_s2')(pool3_helper)
inception_4a_1x1 = Conv2D(192, (1,1), padding='same', activation='relu', name='inception_4a/1x1', kernel_regularizer=l2(0.0002))(pool3_3x3_s2)
inception_4a_3x3_reduce = Conv2D(96, (1,1), padding='same', activation='relu', name='inception_4a/3x3_reduce', kernel_regularizer=l2(0.0002))(pool3_3x3_s2)
inception_4a_3x3_pad = ZeroPadding2D(padding=(1, 1))(inception_4a_3x3_reduce)
inception_4a_3x3 = Conv2D(208, (3,3), padding='valid', activation='relu', name='inception_4a/3x3' ,kernel_regularizer=l2(0.0002))(inception_4a_3x3_pad)
inception_4a_5x5_reduce = Conv2D(16, (1,1), padding='same', activation='relu', name='inception_4a/5x5_reduce', kernel_regularizer=l2(0.0002))(pool3_3x3_s2)
inception_4a_5x5_pad = ZeroPadding2D(padding=(2, 2))(inception_4a_5x5_reduce)
inception_4a_5x5 = Conv2D(48, (5,5), padding='valid', activation='relu', name='inception_4a/5x5', kernel_regularizer=l2(0.0002))(inception_4a_5x5_pad)
inception_4a_pool = MaxPooling2D(pool_size=(3,3), strides=(1,1), padding='same', name='inception_4a/pool')(pool3_3x3_s2)
inception_4a_pool_proj = Conv2D(64, (1,1), padding='same', activation='relu', name='inception_4a/pool_proj', kernel_regularizer=l2(0.0002))(inception_4a_pool)
inception_4a_output = Concatenate(axis=1, name='inception_4a/output')([inception_4a_1x1,inception_4a_3x3,inception_4a_5x5,inception_4a_pool_proj])
loss1_ave_pool = AveragePooling2D(pool_size=(5,5), strides=(3,3), name='loss1/ave_pool')(inception_4a_output)
loss1_conv = Conv2D(128, (1,1), padding='same', activation='relu', name='loss1/conv', kernel_regularizer=l2(0.0002))(loss1_ave_pool)
loss1_flat = Flatten()(loss1_conv)
loss1_fc = Dense(1024, activation='relu', name='loss1/fc', kernel_regularizer=l2(0.0002))(loss1_flat)
loss1_drop_fc = Dropout(rate=0.7)(loss1_fc)
loss1_classifier = Dense(1000, name='loss1/classifier', kernel_regularizer=l2(0.0002))(loss1_drop_fc)
loss1_classifier_act = Activation('softmax')(loss1_classifier)
inception_4b_1x1 = Conv2D(160, (1,1), padding='same', activation='relu', name='inception_4b/1x1', kernel_regularizer=l2(0.0002))(inception_4a_output)
inception_4b_3x3_reduce = Conv2D(112, (1,1), padding='same', activation='relu', name='inception_4b/3x3_reduce', kernel_regularizer=l2(0.0002))(inception_4a_output)
inception_4b_3x3_pad = ZeroPadding2D(padding=(1, 1))(inception_4b_3x3_reduce)
inception_4b_3x3 = Conv2D(224, (3,3), padding='valid', activation='relu', name='inception_4b/3x3', kernel_regularizer=l2(0.0002))(inception_4b_3x3_pad)
inception_4b_5x5_reduce = Conv2D(24, (1,1), padding='same', activation='relu', name='inception_4b/5x5_reduce', kernel_regularizer=l2(0.0002))(inception_4a_output)
inception_4b_5x5_pad = ZeroPadding2D(padding=(2, 2))(inception_4b_5x5_reduce)
inception_4b_5x5 = Conv2D(64, (5,5), padding='valid', activation='relu', name='inception_4b/5x5', kernel_regularizer=l2(0.0002))(inception_4b_5x5_pad)
inception_4b_pool = MaxPooling2D(pool_size=(3,3), strides=(1,1), padding='same', name='inception_4b/pool')(inception_4a_output)
inception_4b_pool_proj = Conv2D(64, (1,1), padding='same', activation='relu', name='inception_4b/pool_proj', kernel_regularizer=l2(0.0002))(inception_4b_pool)
inception_4b_output = Concatenate(axis=1, name='inception_4b/output')([inception_4b_1x1,inception_4b_3x3,inception_4b_5x5,inception_4b_pool_proj])
inception_4c_1x1 = Conv2D(128, (1,1), padding='same', activation='relu', name='inception_4c/1x1', kernel_regularizer=l2(0.0002))(inception_4b_output)
inception_4c_3x3_reduce = Conv2D(128, (1,1), padding='same', activation='relu', name='inception_4c/3x3_reduce', kernel_regularizer=l2(0.0002))(inception_4b_output)
inception_4c_3x3_pad = ZeroPadding2D(padding=(1, 1))(inception_4c_3x3_reduce)
inception_4c_3x3 = Conv2D(256, (3,3), padding='valid', activation='relu', name='inception_4c/3x3', kernel_regularizer=l2(0.0002))(inception_4c_3x3_pad)
inception_4c_5x5_reduce = Conv2D(24, (1,1), padding='same', activation='relu', name='inception_4c/5x5_reduce', kernel_regularizer=l2(0.0002))(inception_4b_output)
inception_4c_5x5_pad = ZeroPadding2D(padding=(2, 2))(inception_4c_5x5_reduce)
inception_4c_5x5 = Conv2D(64, (5,5), padding='valid', activation='relu', name='inception_4c/5x5', kernel_regularizer=l2(0.0002))(inception_4c_5x5_pad)
inception_4c_pool = MaxPooling2D(pool_size=(3,3), strides=(1,1), padding='same', name='inception_4c/pool')(inception_4b_output)
inception_4c_pool_proj = Conv2D(64, (1,1), padding='same', activation='relu', name='inception_4c/pool_proj', kernel_regularizer=l2(0.0002))(inception_4c_pool)
inception_4c_output = Concatenate(axis=1, name='inception_4c/output')([inception_4c_1x1,inception_4c_3x3,inception_4c_5x5,inception_4c_pool_proj])
inception_4d_1x1 = Conv2D(112, (1,1), padding='same', activation='relu', name='inception_4d/1x1', kernel_regularizer=l2(0.0002))(inception_4c_output)
inception_4d_3x3_reduce = Conv2D(144, (1,1), padding='same', activation='relu', name='inception_4d/3x3_reduce', kernel_regularizer=l2(0.0002))(inception_4c_output)
inception_4d_3x3_pad = ZeroPadding2D(padding=(1, 1))(inception_4d_3x3_reduce)
inception_4d_3x3 = Conv2D(288, (3,3), padding='valid', activation='relu', name='inception_4d/3x3', kernel_regularizer=l2(0.0002))(inception_4d_3x3_pad)
inception_4d_5x5_reduce = Conv2D(32, (1,1), padding='same', activation='relu', name='inception_4d/5x5_reduce', kernel_regularizer=l2(0.0002))(inception_4c_output)
inception_4d_5x5_pad = ZeroPadding2D(padding=(2, 2))(inception_4d_5x5_reduce)
inception_4d_5x5 = Conv2D(64, (5,5), padding='valid', activation='relu', name='inception_4d/5x5', kernel_regularizer=l2(0.0002))(inception_4d_5x5_pad)
inception_4d_pool = MaxPooling2D(pool_size=(3,3), strides=(1,1), padding='same', name='inception_4d/pool')(inception_4c_output)
inception_4d_pool_proj = Conv2D(64, (1,1), padding='same', activation='relu', name='inception_4d/pool_proj', kernel_regularizer=l2(0.0002))(inception_4d_pool)
inception_4d_output = Concatenate(axis=1, name='inception_4d/output')([inception_4d_1x1,inception_4d_3x3,inception_4d_5x5,inception_4d_pool_proj])
loss2_ave_pool = AveragePooling2D(pool_size=(5,5), strides=(3,3), name='loss2/ave_pool')(inception_4d_output)
loss2_conv = Conv2D(128, (1,1), padding='same', activation='relu', name='loss2/conv', kernel_regularizer=l2(0.0002))(loss2_ave_pool)
loss2_flat = Flatten()(loss2_conv)
loss2_fc = Dense(1024, activation='relu', name='loss2/fc', kernel_regularizer=l2(0.0002))(loss2_flat)
loss2_drop_fc = Dropout(rate=0.7)(loss2_fc)
loss2_classifier = Dense(1000, name='loss2/classifier', kernel_regularizer=l2(0.0002))(loss2_drop_fc)
loss2_classifier_act = Activation('softmax')(loss2_classifier)
inception_4e_1x1 = Conv2D(256, (1,1), padding='same', activation='relu', name='inception_4e/1x1', kernel_regularizer=l2(0.0002))(inception_4d_output)
inception_4e_3x3_reduce = Conv2D(160, (1,1), padding='same', activation='relu', name='inception_4e/3x3_reduce', kernel_regularizer=l2(0.0002))(inception_4d_output)
inception_4e_3x3_pad = ZeroPadding2D(padding=(1, 1))(inception_4e_3x3_reduce)
inception_4e_3x3 = Conv2D(320, (3,3), padding='valid', activation='relu', name='inception_4e/3x3', kernel_regularizer=l2(0.0002))(inception_4e_3x3_pad)
inception_4e_5x5_reduce = Conv2D(32, (1,1), padding='same', activation='relu', name='inception_4e/5x5_reduce', kernel_regularizer=l2(0.0002))(inception_4d_output)
inception_4e_5x5_pad = ZeroPadding2D(padding=(2, 2))(inception_4e_5x5_reduce)
inception_4e_5x5 = Conv2D(128, (5,5), padding='valid', activation='relu', name='inception_4e/5x5', kernel_regularizer=l2(0.0002))(inception_4e_5x5_pad)
inception_4e_pool = MaxPooling2D(pool_size=(3,3), strides=(1,1), padding='same', name='inception_4e/pool')(inception_4d_output)
inception_4e_pool_proj = Conv2D(128, (1,1), padding='same', activation='relu', name='inception_4e/pool_proj', kernel_regularizer=l2(0.0002))(inception_4e_pool)
inception_4e_output = Concatenate(axis=1, name='inception_4e/output')([inception_4e_1x1,inception_4e_3x3,inception_4e_5x5,inception_4e_pool_proj])
inception_4e_output_zero_pad = ZeroPadding2D(padding=(1, 1))(inception_4e_output)
pool4_helper = PoolHelper()(inception_4e_output_zero_pad)
pool4_3x3_s2 = MaxPooling2D(pool_size=(3,3), strides=(2,2), padding='valid', name='pool4/3x3_s2')(pool4_helper)
inception_5a_1x1 = Conv2D(256, (1,1), padding='same', activation='relu', name='inception_5a/1x1', kernel_regularizer=l2(0.0002))(pool4_3x3_s2)
inception_5a_3x3_reduce = Conv2D(160, (1,1), padding='same', activation='relu', name='inception_5a/3x3_reduce', kernel_regularizer=l2(0.0002))(pool4_3x3_s2)
inception_5a_3x3_pad = ZeroPadding2D(padding=(1, 1))(inception_5a_3x3_reduce)
inception_5a_3x3 = Conv2D(320, (3,3), padding='valid', activation='relu', name='inception_5a/3x3', kernel_regularizer=l2(0.0002))(inception_5a_3x3_pad)
inception_5a_5x5_reduce = Conv2D(32, (1,1), padding='same', activation='relu', name='inception_5a/5x5_reduce', kernel_regularizer=l2(0.0002))(pool4_3x3_s2)
inception_5a_5x5_pad = ZeroPadding2D(padding=(2, 2))(inception_5a_5x5_reduce)
inception_5a_5x5 = Conv2D(128, (5,5), padding='valid', activation='relu', name='inception_5a/5x5', kernel_regularizer=l2(0.0002))(inception_5a_5x5_pad)
inception_5a_pool = MaxPooling2D(pool_size=(3,3), strides=(1,1), padding='same', name='inception_5a/pool')(pool4_3x3_s2)
inception_5a_pool_proj = Conv2D(128, (1,1), padding='same', activation='relu', name='inception_5a/pool_proj', kernel_regularizer=l2(0.0002))(inception_5a_pool)
inception_5a_output = Concatenate(axis=1, name='inception_5a/output')([inception_5a_1x1,inception_5a_3x3,inception_5a_5x5,inception_5a_pool_proj])
inception_5b_1x1 = Conv2D(384, (1,1), padding='same', activation='relu', name='inception_5b/1x1', kernel_regularizer=l2(0.0002))(inception_5a_output)
inception_5b_3x3_reduce = Conv2D(192, (1,1), padding='same', activation='relu', name='inception_5b/3x3_reduce', kernel_regularizer=l2(0.0002))(inception_5a_output)
inception_5b_3x3_pad = ZeroPadding2D(padding=(1, 1))(inception_5b_3x3_reduce)
inception_5b_3x3 = Conv2D(384, (3,3), padding='valid', activation='relu', name='inception_5b/3x3', kernel_regularizer=l2(0.0002))(inception_5b_3x3_pad)
inception_5b_5x5_reduce = Conv2D(48, (1,1), padding='same', activation='relu', name='inception_5b/5x5_reduce', kernel_regularizer=l2(0.0002))(inception_5a_output)
inception_5b_5x5_pad = ZeroPadding2D(padding=(2, 2))(inception_5b_5x5_reduce)
inception_5b_5x5 = Conv2D(128, (5,5), padding='valid', activation='relu', name='inception_5b/5x5', kernel_regularizer=l2(0.0002))(inception_5b_5x5_pad)
inception_5b_pool = MaxPooling2D(pool_size=(3,3), strides=(1,1), padding='same', name='inception_5b/pool')(inception_5a_output)
inception_5b_pool_proj = Conv2D(128, (1,1), padding='same', activation='relu', name='inception_5b/pool_proj', kernel_regularizer=l2(0.0002))(inception_5b_pool)
inception_5b_output = Concatenate(axis=1, name='inception_5b/output')([inception_5b_1x1,inception_5b_3x3,inception_5b_5x5,inception_5b_pool_proj])
pool5_7x7_s1 = AveragePooling2D(pool_size=(7,7), strides=(1,1), name='pool5/7x7_s2')(inception_5b_output)
loss3_flat = Flatten()(pool5_7x7_s1)
pool5_drop_7x7_s1 = Dropout(rate=0.4)(loss3_flat)
loss3_classifier = Dense(1000, name='loss3/classifier', kernel_regularizer=l2(0.0002))(pool5_drop_7x7_s1)
loss3_classifier_act = Activation('softmax', name='prob')(loss3_classifier)
googlenet = Model(inputs=input, outputs=[loss1_classifier_act,loss2_classifier_act,loss3_classifier_act])
if weights_path:
googlenet.load_weights(weights_path)
if keras.backend.backend() == 'tensorflow':
# convert the convolutional kernels for tensorflow
ops = []
for layer in googlenet.layers:
if layer.__class__.__name__ == 'Conv2D':
original_w = K.get_value(layer.kernel)
converted_w = convert_kernel(original_w)
ops.append(tf.assign(layer.kernel, converted_w).op)
K.get_session().run(ops)
return googlenet
if __name__ == "__main__":
img = imageio.imread('cat.jpg', pilmode='RGB')
img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32)
img[:, :, 0] -= 123.68
img[:, :, 1] -= 116.779
img[:, :, 2] -= 103.939
img[:,:,[0,1,2]] = img[:,:,[2,1,0]]
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis=0)
# Test pretrained model
model = create_googlenet('googlenet_weights.h5')
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy')
out = model.predict(img) # note: the model has three outputs
labels = np.loadtxt('synset_words.txt', str, delimiter='\t')
predicted_label = np.argmax(out[2])
predicted_class_name = labels[predicted_label]
print('Predicted Class: ', predicted_label, ', Class Name: ', predicted_class_name)
from keras.layers.core import Layer
from keras import backend as K
if K.backend() == 'theano':
import theano.tensor as T
elif K.backend() == 'tensorflow':
import tensorflow as tf
else:
raise NotImplementedError
class LRN(Layer):
def __init__(self, alpha=0.0001, k=1, beta=0.75, n=5, **kwargs):
self.alpha = alpha
self.k = k
self.beta = beta
self.n = n
super(LRN, self).__init__(**kwargs)
def call(self, x, mask=None):
b, ch, r, c = x.shape
half_n = self.n // 2 # half the local region
input_sqr = K.square(x) # square the input
if K.backend() == 'theano':
# make an empty tensor with zero pads along channel dimension
zeros = T.alloc(0., b, ch + 2*half_n, r, c)
# set the center to be the squared input
input_sqr = T.set_subtensor(zeros[:, half_n:half_n+ch, :, :], input_sqr)
else:
input_sqr = tf.pad(input_sqr, [[0, 0], [half_n, half_n], [0, 0], [0, 0]])
scale = self.k # offset for the scale
norm_alpha = self.alpha / self.n # normalized alpha
for i in range(self.n):
scale += norm_alpha * input_sqr[:, i:i+ch, :, :]
scale = scale ** self.beta
x = x / scale
return x
def get_config(self):
config = {"alpha": self.alpha,
"k": self.k,
"beta": self.beta,
"n": self.n}
base_config = super(LRN, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
from keras.layers.core import Layer
class PoolHelper(Layer):
def __init__(self, **kwargs):
super(PoolHelper, self).__init__(**kwargs)
def call(self, x, mask=None):
return x[:,:,1:,1:]
def get_config(self):
config = {}
base_config = super(PoolHelper, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@babloogpb1
Copy link

Thanks for your reply. I use Keras 2.4.3 and TensorFlow 2.3. It might be a reason for the issue of version compatibility. After updating the following lines of code to adapt to the above-mentioned environment, I can run the script with the correct classification. But I get the wrong total parameter number while running googlenet.summary().

1. Modify the script to adapt to TensorFlow 2.4.3 and Keras 2.4

Predicted Class: 282 , Class Name: n02123159 tiger cat

I make the following modification.

Modify the import statements

if keras.backend.backend() == 'tensorflow':
    # -from keras import backend as K
    from keras import backend
    # -import tensorflow as tf
    import tensorflow.compat.v1 as tf
    tf.compat.v1.disable_eager_execution()
    from keras.utils.conv_utils import convert_kernel

Set up the GPU to avoid the runtime error: Could not create cuDNN handle...

gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)

Delete the following lines of code highlighted with "# -" and add the new lines of code below the highlighted code.

    if keras.backend.backend() == 'tensorflow':
        # convert the convolutional kernels for tensorflow
        ops = []
        for layer in googlenet.layers:
            if layer.__class__.__name__ == 'Conv2D':
                # -original_w = K.get_value(layer.kernel)
                original_w = keras.backend.get_value(layer.kernel)
                converted_w = convert_kernel(original_w)
                # -ops.append(tf.assign(layer.kernel, converted_w).op)
                ops.append(tf.compat.v1.assign(layer.kernel, converted_w).op)
        # -K.get_session().run(ops)
        tf.compat.v1.keras.backend.get_session().run(ops)

2. Total parameter number(wrong)

I get the total parameter number of 13,378,280. But the original GoogLeNet Inception v1 has 5.79+ million parameters in total. What's wrong with the huge gap of the total parameter numbers?

After adding the three line of code and deleting the sections including the sections from "if weights_path..." to the main section.

input = Input(shape=(3, 224, 224))
googlenet = create_googlenet(input)
googlenet.summary()

Reference:
Google Inception v1 Paper: Page: 5/9
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf

Cheers

Thank you for the help!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment