Skip to content

Instantly share code, notes, and snippets.

🏠
Working from home

Joe Kington joferkington

🏠
Working from home
Block or report user

Report or block joferkington

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
View zmap2xyz.py
"""
Converts one or more zmap grids to ascii x,y,z tab-delimited files. Exported
files will be saved to the current directory with a ".xyz" extension and the
same file name as the original. Null grid values will not be included unless
the "--with_nulls" option is specified.
Usage:
zmap2xyz.py [options] INPUT_FILES...
Options:
@joferkington
joferkington / cards_that_do_not_fit_future_sight.py
Created Nov 30, 2018
How many MTG cards would not fit on a future sight border?
View cards_that_do_not_fit_future_sight.py
import json
# https://mtgjson.com/v4/json/AllCards.json.zip
with open('AllCards.json', 'r') as infile:
data = json.load(infile)
for name in data:
card = data[name]
cost = card.get('manaCost', '')
if cost.count('{') > 6:
View circular_colorbar_demo.py
import numpy as np
from scipy.interpolate import Rbf
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
from mpl_toolkits.axes_grid1 import inset_locator
from matplotlib.projections.polar import PolarAxes
np.random.seed(1977)
def main():
x, y, z = generate_surface()
View example_scrolling_plot.py
import Tkinter as tk
import numpy as np
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
def main():
root = tk.Tk()
app = Application(root)
tk.mainloop()
@joferkington
joferkington / struct_vs_numpy_example.py
Last active Dec 7, 2015
Writing an arbitrary, pre-existing numpy array to a hetergenous binary format
View struct_vs_numpy_example.py
import numpy as np
# Our input data...
x = np.random.randint(0, 3200, (1000,1000))
# We're replacing something like
# struct.pack(">"+"hB"*x.size)
# Note that that's a 2-byte signed int followed by 1-byte unsigned
# We'll need to create the output 1D array and assign manually:
View fast_kde.py
import numpy as np
import scipy.sparse
import scipy.ndimage
import scipy.stats
import scipy.signal
import matplotlib.pyplot as plt
def main():
x, y = generate_data(int(1e7))
View matplotlib_layout_model.py
import matplotlib.pyplot as plt
def main():
resized = (8, 3)
basic_example()
basic_example(resized)
fixed_aspect()
fixed_aspect(resized)
View pandas_merge_example.py
import numpy as np
import pandas as pd
#-- Generate some data similar to yours
idx = np.arange(20)
np.random.shuffle(idx)
idx1 = idx[:15]
np.random.shuffle(idx)
idx2 = idx[:10]
@joferkington
joferkington / silly.py
Created Aug 28, 2015
Lovely dynamic typing
View silly.py
import random
class BadIdea(object):
def __getattr__(self, key):
return random.randint(0, 1000)
def __setattr__(self, key, value):
pass
x = BadIdea()
View bachelors_mpl_pr.py
import matplotlib.pyplot as plt
from matplotlib.mlab import csv2rec
from matplotlib.cbook import get_sample_data
#fname = get_sample_data('percent_bachelors_degrees_women_usa.csv')
fname = 'percent_bachelors_degrees_women_usa.csv'
gender_degree_data = csv2rec(fname)
# These are the colors that will be used in the plot
You can’t perform that action at this time.